These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32599842)

  • 21. Capacity Fading Mechanism of the Commercial 18650 LiFePO
    Liu Q; Liu Y; Yang F; He H; Xiao X; Ren Y; Lu W; Stach E; Xie J
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4622-4629. PubMed ID: 29309119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LiFePO4 nanoparticles enveloped in freestanding sandwich-like graphitized carbon sheets as enhanced remarkable lithium-ion battery cathode.
    Zhang Y; Zhang H; Li X; Xu H; Wang Y
    Nanotechnology; 2016 Apr; 27(15):155401. PubMed ID: 26934516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast preparation of LiFePO4 nanoparticles for lithium batteries by microwave-assisted hydrothermal method.
    Yang G; Ji H; Liu H; Huo K; Fu J; Chu PK
    J Nanosci Nanotechnol; 2010 Feb; 10(2):980-6. PubMed ID: 20352745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanosized LiFePO4 cathode materials for lithium ion batteries.
    Gu HB; Jun DK; Park GC; Jin B; Jin EM
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3980-4. PubMed ID: 18047100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development, Investigation, and Comparative Study of the Effects of Various Metal Oxides on Optical Electrochemical Properties Using a Doped PANI Matrix.
    Bekhoukh A; Moulefera I; Sabantina L; Benyoucef A
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unlocking the energy capabilities of micron-sized LiFePO4.
    Guo L; Zhang Y; Wang J; Ma L; Ma S; Zhang Y; Wang E; Bi Y; Wang D; McKee WC; Xu Y; Chen J; Zhang Q; Nan C; Gu L; Bruce PG; Peng Z
    Nat Commun; 2015 Aug; 6():7898. PubMed ID: 26235395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.
    Lee YC; Han DW; Park M; Jo MR; Kang SH; Lee JK; Kang YM
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9435-41. PubMed ID: 24786736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conjugated System of PEDOT:PSS-Induced Self-Doped PANI for Flexible Zinc-Ion Batteries with Enhanced Capacity and Cyclability.
    Liu Y; Xie L; Zhang W; Dai Z; Wei W; Luo S; Chen X; Chen W; Rao F; Wang L; Huang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30943-30952. PubMed ID: 31364840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.
    Ha J; Park SK; Yu SH; Jin A; Jang B; Bong S; Kim I; Sung YE; Piao Y
    Nanoscale; 2013 Sep; 5(18):8647-55. PubMed ID: 23897269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrothermal preparation and performance of LiFePO
    Wang X; Wang X; Zhang R; Wang Y; Shu H
    Waste Manag; 2018 Aug; 78():208-216. PubMed ID: 32559906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of graphene embedded LiFePOâ‚„ using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries.
    Kim W; Ryu W; Han D; Lim S; Eom J; Kwon H
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4731-6. PubMed ID: 24621267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Polyaniline on Sulfur/Sepiolite Composite Cathode for Lithium-Sulfur Batteries.
    Chelladurai K; Venkatachalam P; Rengapillai S; Liu WR; Huang CH; Marimuthu S
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32244334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SnO
    Zhang F; Yang C; Gao X; Chen S; Hu Y; Guan H; Ma Y; Zhang J; Zhou H; Qi L
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9620-9629. PubMed ID: 28248075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of Micro-Nano-Structured FePO
    Ming XL; Wang R; Li T; Wu X; Yuan LJ; Zhao Y
    ACS Omega; 2021 Jul; 6(29):18957-18963. PubMed ID: 34337235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant-Assisted Synthesis of Micro/Nano-Structured LiFePO
    Qiao Y; Liu Y; Zhu J; Jia P; Zhang L; Zhou W; Jiao T
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of V-Doped LiFePO4/C as the Optimized Cathode Material for Lithium Ion Batteries.
    Sun P; Zhang H; Shen K; Fan Q; Xu Q
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2667-72. PubMed ID: 26353479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium-selenium batteries.
    Ye W; Wang K; Yin W; Chai W; Rui Y; Tang B
    Dalton Trans; 2019 Jul; 48(27):10191-10198. PubMed ID: 31190031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries.
    Prasanna K; Subburaj T; Jo YN; Lee WJ; Lee CW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7884-90. PubMed ID: 25822540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Polyaniline for Li-Ion Batteries, Lithium-Sulfur Batteries, and Supercapacitors.
    Luo Y; Guo R; Li T; Li F; Liu Z; Zheng M; Wang B; Yang Z; Luo H; Wan Y
    ChemSusChem; 2019 Apr; 12(8):1591-1611. PubMed ID: 30376216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.
    Ni H; Liu J; Fan LZ
    Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.