BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32599879)

  • 1. Alternative to Nitric Acid Passivation of 15-5 and 17-4PH Stainless Steel Using Electrochemical Techniques.
    Lara-Banda M; Gaona-Tiburcio C; Zambrano-Robledo P; Delgado-E M; Cabral-Miramontes JA; Nieves-Mendoza D; Maldonado-Bandala E; Estupiñan-López F; G Chacón-Nava J; Almeraya-Calderón F
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32599879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.
    Luo H; Su H; Dong C; Xiao K; Li X
    Data Brief; 2015 Dec; 5():171-8. PubMed ID: 26501086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion Resistance to Chloride of a Novel Stainless Steel: The Threshold Chloride Value and Effect of Surface State.
    Wang H; Wu Y; Sun X; Ling J; Zou D
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31373335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.
    Li L; Breedveld V; Hess DW
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4549-56. PubMed ID: 22913317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution.
    Yu Y; Shironita S; Souma K; Umeda M
    Heliyon; 2018 Nov; 4(11):e00958. PubMed ID: 30839865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Development for Corrosion Monitoring of Stainless Steels in H
    Hren M; Kosec T; Lindgren M; Huttunen-Saarivirta E; Legat A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.
    Yoo YR; Jang SG; Oh KT; Kim JG; Kim YS
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):310-20. PubMed ID: 18161790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of skeletal muscle proteins on corrosion of stainless steels].
    Rojas C; Lago ME
    Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion behavior of 2205 duplex stainless steel.
    Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK
    Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An impedance study of two types of stainless steel in Ringer physiological solution containing complexing agents.
    Slemnik M; Milosev I
    J Mater Sci Mater Med; 2006 Oct; 17(10):911-8. PubMed ID: 16977388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Investigations of Steels in Seawater Sea Sand Concrete Environments.
    Yu X; Al-Saadi S; Zhao XL; Raman RKS
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion Susceptibility and Allergy Potential of Austenitic Stainless Steels.
    Reclaru L; Ardelean LC
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32967138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.
    Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galvanic corrosion of ferritic stainless steels used for dental magnetic attachments in contact with an iron-platinum magnet.
    Nakamura K; Takada Y; Yoda M; Kimura K; Okuno O
    Dent Mater J; 2008 Mar; 27(2):203-10. PubMed ID: 18540393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory.
    Ehsani A; Mahjani MG; Hosseini M; Safari R; Moshrefi R; Mohammad Shiri H
    J Colloid Interface Sci; 2017 Mar; 490():444-451. PubMed ID: 27914344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion Properties of Boron- and Manganese-Alloyed Stainless Steels as a Material for the Bipolar Plates of PEM Fuel Cells.
    Lovaši T; Pečinka V; Ludvík J; Kubásek J; Průša F; Kouřil M
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment.
    Endo K; Suzuki M; Ohno H
    Dent Mater J; 2000 Mar; 19(1):34-49. PubMed ID: 11219089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC; Katsuma S; Fujimoto S; Hiromoto S
    Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of in site strain on passivated property of the 316L stainless steels.
    Jinlong L; Tongxiang L; Chen W; Ting G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():32-6. PubMed ID: 26838820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.