These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3259996)

  • 1. Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses--II: Experimental comparison and parametric investigations.
    Wiesner TF; Levesque MJ; Rooz E; Nerem RM
    J Biomech Eng; 1988 May; 110(2):144-9. PubMed ID: 3259996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses--I: Model and numerical method.
    Rooz E; Wiesner TF; Nerem RM
    J Biomech Eng; 1985 Nov; 107(4):361-7. PubMed ID: 3878435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of coronary circulation under ischaemic conditions.
    Manor D; Sideman S; Dinnar U; Beyar R
    Med Biol Eng Comput; 1994 Jul; 32(4 Suppl):S123-32. PubMed ID: 7967825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of intra-aortic balloon counterpulsation on coronary blood flow velocity distal to coronary artery stenoses.
    Anderson RD; Gurbel PA
    Cardiology; 1996; 87(4):306-12. PubMed ID: 8793165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of stenosis of bypass grafts on coronary blood flow. A mechanical model study.
    Cipriano PR; Sacks AH; Reitz BA
    Circulation; 1980 Jul; 62(1):61-6. PubMed ID: 6966546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling rough stenoses by an immersed-boundary method.
    Yakhot A; Grinberg L; Nikitin N
    J Biomech; 2005 May; 38(5):1115-27. PubMed ID: 15797593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational fluid dynamics simulation study of coronary blood flow affected by graft placement†.
    Lassaline JV; Moon BC
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):16-20. PubMed ID: 24760796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of aorto-iliac arterial stenoses in terms of pressure and flow.
    Baker AR; Prytherch DR; Evans DH; Bell PR
    Cardiovasc Res; 1985 Sep; 19(9):559-66. PubMed ID: 3899359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation.
    Fearon WF; Aarnoudse W; Pijls NH; De Bruyne B; Balsam LB; Cooke DT; Robbins RC; Fitzgerald PJ; Yeung AC; Yock PG
    Circulation; 2004 May; 109(19):2269-72. PubMed ID: 15136503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses.
    Vimmr J; Jonášová A; Bublík O
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1057-81. PubMed ID: 23733715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional flow reserve-guided coronary artery bypass grafting: can intraoperative physiologic imaging guide decision making?
    Ferguson TB; Chen C; Babb JD; Efird JT; Daggubati R; Cahill JM
    J Thorac Cardiovasc Surg; 2013 Oct; 146(4):824-835.e1. PubMed ID: 23915918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow studies in three-dimensional aorto-right coronary bypass graft system.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    J Med Eng Technol; 2006; 30(5):269-82. PubMed ID: 16980282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of coronary arterial stenosis during cardiopulmonary bypass.
    Engelman RM; Spencer FC; Boyd AD; Chandra R
    J Thorac Cardiovasc Surg; 1975 Nov; 70(5):869-79. PubMed ID: 127092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro investigation of the impact of aortic valve stenosis severity on left coronary artery flow.
    Gaillard E; Garcia D; Kadem L; Pibarot P; Durand LG
    J Biomech Eng; 2010 Apr; 132(4):044502. PubMed ID: 20387975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor.
    Fan Y; Xu Z; Jiang W; Deng X; Wang K; Sun A
    J Biomech; 2008 Aug; 41(11):2498-505. PubMed ID: 18573497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.