These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3259996)

  • 21. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation study of the fluid dynamics of aorto-coronary bypass.
    Pietrabissa R; Inzoli F; Fumero R
    J Biomed Eng; 1990 Sep; 12(5):419-24. PubMed ID: 2214731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Qualitative angiographic and quantitative myocardial perfusion assessment using fluorescent cardiac imaging during graded coronary artery bypass stenosis.
    Detter C; Russ D; Kersten JF; Reichenspurner H; Wipper S
    Int J Cardiovasc Imaging; 2018 Feb; 34(2):159-167. PubMed ID: 28712068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myocardial ischaemia produced by ergonovine-induced vasoconstriction during preexisting coronary stenosis: experimental conditions for the geometric theory.
    Yokoyama M; Sakamoto S; Kawashima S; Okada T; Fukuzaki H
    Cardiovasc Res; 1985 Apr; 19(4):237-48. PubMed ID: 4005899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal bypass graft design for left anterior descending and diagonal territory in multivessel coronary disease.
    Koyama S; Itatani K; Yamamoto T; Miyazaki S; Kitamura T; Taketani T; Ono M; Miyaji K
    Interact Cardiovasc Thorac Surg; 2014 Sep; 19(3):406-13. PubMed ID: 24893870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of blood flow velocity in stenosed arteries by the use of finite elements: an observer-independent noninvasive method.
    Mühlthaler H; Quatember B; Fraedrich G; Mühlthaler M; Pfeifer B; Greiner A; Schocke MF
    Magn Reson Imaging; 2008 Oct; 26(8):1152-9. PubMed ID: 18687550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis.
    Folts J
    Circulation; 1991 Jun; 83(6 Suppl):IV3-14. PubMed ID: 2040070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions.
    Kamangar S; Badruddin IA; Govindaraju K; Nik-Ghazali N; Badarudin A; Viswanathan GN; Ahmed NJS; Khan TMY
    Med Biol Eng Comput; 2017 Aug; 55(8):1451-1461. PubMed ID: 28004229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsatile pressure and flow in arterial stenoses simulated in a mathematical model.
    Wille SO; Walløe L
    J Biomed Eng; 1981 Jan; 3(1):17-24. PubMed ID: 7464086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical modelling of simulated blood flow in idealized composite arterial coronary grafts: transient flow.
    Politis AK; Stavropoulos GP; Christolis MN; Panagopoulos PG; Vlachos NS; Markatos NC
    J Biomech; 2008; 41(1):25-39. PubMed ID: 17905256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices.
    Malota Z; Glowacki J; Sadowski W; Kostur M
    BMC Cardiovasc Disord; 2018 Jun; 18(1):132. PubMed ID: 29954323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The vascular steal phenomenon: an experimental model.
    Billet A; Queral LA; Polito WF; Dagher FJ
    Surgery; 1984 Nov; 96(5):923-8. PubMed ID: 6495180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical analysis of steady flow in aorto-coronary bypass 3-D model.
    Inzoli F; Migliavacca F; Pennati G
    J Biomech Eng; 1996 May; 118(2):172-9. PubMed ID: 8738781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of arterial wall compliance on the pressure drop across coronary artery stenoses under hyperemic flow condition.
    Konala BC; Das A; Banerjee RK
    Mol Cell Biomech; 2011 Mar; 8(1):1-20. PubMed ID: 21391325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical modelling of the release rate of low-density lipoproteins and their breakdown products at arterial stenoses.
    Deng X; Stroman PW; Guidoin R
    Clin Invest Med; 1996 Apr; 19(2):83-91. PubMed ID: 8697674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational fluid-structure interaction analysis of coronary Y-grafts.
    Guerciotti B; Vergara C; Ippolito S; Quarteroni A; Antona C; Scrofani R
    Med Eng Phys; 2017 Sep; 47():117-127. PubMed ID: 28734873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical simulation of low-density lipoprotein mass transport in human arterial stenosis - Calculation of the filtration velocity.
    Karami F; Hossainpour S; Ghalichi F
    Biomed Mater Eng; 2018; 29(1):95-108. PubMed ID: 29254076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of flow in coronary epicardial arterial tree and intramyocardial circulation.
    Manor D; Sideman S; Dinnar U; Beyar R
    Med Biol Eng Comput; 1994 Jul; 32(4 Suppl):S133-43. PubMed ID: 7967826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Dependence of blood flow in human aorto-coronary bypass grafts on the extravascular resistance (author's transl)].
    Pasch T; Reichl M; von der Emde J
    Z Kardiol; 1977 Jun; 66(6):281-7. PubMed ID: 302535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.