BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32600040)

  • 1. Reliable Quantification of pH Variation in Live Cells Using Prussian Blue-Caged Surface-Enhanced Raman Scattering Probes.
    Bi Y; Di H; Zeng E; Li Q; Li W; Yang J; Liu D
    Anal Chem; 2020 Jul; 92(14):9574-9582. PubMed ID: 32600040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prussian Blue as a Highly Sensitive and Background-Free Resonant Raman Reporter.
    Yin Y; Li Q; Ma S; Liu H; Dong B; Yang J; Liu D
    Anal Chem; 2017 Feb; 89(3):1551-1557. PubMed ID: 28208262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When Prussian Blue Meets Porous Gold Nanoparticles: A High Signal-to-Background Surface-Enhanced Raman Scattering Probe for Cellular Biomarker Imaging.
    Li X; Zeng E; Di H; Li Q; Ji J; Yang J; Liu D
    Adv Biosyst; 2019 Jul; 3(7):e1900046. PubMed ID: 32648671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background-Free SERS Nanosensor for Endogenous Hydrogen Sulfide Detection Based on Prussian Blue-Coated Gold Nanobipyramids.
    Chen J; Cheng L; Yang Y; Liu Y; Su C; He Y; You M; Lin Z; Hong G
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14467-14473. PubMed ID: 38491944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric SERS quantitative analysis of tyrosinase activity based on gold-gold hybrid nanoparticles with Prussian blue as an internal standard.
    Lu D; Zhang Q; Huang Z; Lu Y; Feng S; You R; Li M; Zhang S
    Colloids Surf B Biointerfaces; 2022 Sep; 217():112645. PubMed ID: 35780613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine synthesis of Prussian-blue analogue coated gold nanoparticles (Au@PBA NPs) for sorting specific cancer cell subtypes.
    Shen YM; Gao MY; Chen X; Shen AG; Hu JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119566. PubMed ID: 33607489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live-Cell Surface-Enhanced Raman Spectroscopy Imaging of Intracellular pH: From Two Dimensions to Three Dimensions.
    Zhang Y; Jimenez de Aberasturi D; Henriksen-Lacey M; Langer J; Liz-Marzán LM
    ACS Sens; 2020 Oct; 5(10):3194-3206. PubMed ID: 33092346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoflower-based surface-enhanced Raman probes for pH mapping of tumor cell microenviroment.
    Xie M; Li F; Gu P; Wang F; Qu Z; Li J; Wang L; Zuo X; Zhang X; Shen J
    Cell Prolif; 2019 Jul; 52(4):e12618. PubMed ID: 31033056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous SiO
    Si Y; Li L; Qin X; Bai Y; Li J; Yin Y
    Anal Chim Acta; 2019 May; 1057():1-10. PubMed ID: 30832907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy.
    Zhu W; Gao MY; Zhu Q; Chi B; Zeng LW; Hu JM; Shen AG
    Nanoscale; 2020 Feb; 12(5):3292-3301. PubMed ID: 31971195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic imaging of pH values in cancerous tissue by using polyaniline@gold nanoparticles.
    Li Z; Xia L; Li G; Hu Y
    Mikrochim Acta; 2019 Feb; 186(3):162. PubMed ID: 30721413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe.
    Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN
    Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live-Cell Pyrophosphate Imaging by in Situ Hot-Spot Generation.
    Li M; Li J; Di H; Liu H; Liu D
    Anal Chem; 2017 Mar; 89(6):3532-3537. PubMed ID: 28230967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Monitoring of the "Point Discharge" Induced Antibacterial Process by the Onsite Formation of a Raman Probe.
    Xu J; Qu K; Zhao J; Jian X; Gao Z; Xu J; Song YY
    Anal Chem; 2020 Jan; 92(2):2323-2330. PubMed ID: 31876404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule.
    Lawson LS; Chan JW; Huser T
    Nanoscale; 2014 Jul; 6(14):7971-80. PubMed ID: 24902897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.
    Chen M; Zhang L; Yang B; Gao M; Zhang X
    Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the Changes of pH in Lysosomes during Autophagy and Apoptosis by Plasmon Enhanced Raman Imaging.
    Li SS; Zhang M; Wang JH; Yang F; Kang B; Xu JJ; Chen HY
    Anal Chem; 2019 Jul; 91(13):8398-8405. PubMed ID: 31144810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Silver Coating on Raman Label Incorporated Gold Nanoparticles Assembled Silica Nanoparticles.
    Pham XH; Hahm E; Kang E; Son BS; Ha Y; Kim HM; Jeong DH; Jun BH
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The characteristic Ag(core)Au(shell) nanoparticles as SERS substrates in detecting dopamine molecules at various pH ranges.
    Bu Y; Lee SW
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):47-54. PubMed ID: 26345418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.