These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32600040)

  • 21. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.
    Shen Y; Liang L; Zhang S; Huang D; Zhang J; Xu S; Liang C; Xu W
    Nanoscale; 2018 Jan; 10(4):1622-1630. PubMed ID: 29239454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.
    Chen P; Wang Z; Zong S; Chen H; Zhu D; Zhong Y; Cui Y
    Anal Bioanal Chem; 2014 Oct; 406(25):6337-46. PubMed ID: 25120182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization.
    Zhou W; Li Q; Liu H; Yang J; Liu D
    ACS Nano; 2017 Apr; 11(4):3532-3541. PubMed ID: 28264152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SERS-based particle tracking and molecular imaging in live cells: toward the monitoring of intracellular dynamics.
    Kim J; Nam SH; Lim DK; Suh YD
    Nanoscale; 2019 Nov; 11(45):21724-21727. PubMed ID: 31495836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible Self-Assembly of Nanoprobes in Live Cells for Dynamic Intracellular pH Imaging.
    Dong B; Du S; Wang C; Fu H; Li Q; Xiao N; Yang J; Xue X; Cai W; Liu D
    ACS Nano; 2019 Feb; 13(2):1421-1432. PubMed ID: 30730703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alkyne-DNA-Functionalized Alloyed Au/Ag Nanospheres for Ratiometric Surface-Enhanced Raman Scattering Imaging Assay of Endonuclease Activity in Live Cells.
    Si Y; Bai Y; Qin X; Li J; Zhong W; Xiao Z; Li J; Yin Y
    Anal Chem; 2018 Mar; 90(6):3898-3905. PubMed ID: 29504745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application.
    Liu YQ; Zhu W; Hu JM; Shen AG
    Nanoscale Adv; 2021 Nov; 3(23):6568-6579. PubMed ID: 36132655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic pH measurements of intracellular pathways using nano-plasmonic assemblies.
    Bando K; Zhang Z; Graham D; Faulds K; Fujita K; Kawata S
    Analyst; 2020 Aug; 145(17):5768-5775. PubMed ID: 32661524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette.
    Guo J; Sesena Rubfiaro A; Lai Y; Moscoso J; Chen F; Liu Y; Wang X; He J
    Analyst; 2020 Jul; 145(14):4852-4859. PubMed ID: 32542257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS.
    Sun F; Zhang P; Bai T; David Galvan D; Hung HC; Zhou N; Jiang S; Yu Q
    Biosens Bioelectron; 2015 Nov; 73():202-207. PubMed ID: 26071692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PEGylated magnetic Prussian blue nanoparticles asa multifunctional therapeutic agent for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells.
    Xue P; Sun L; Li Q; Zhang L; Xu Z; Li CM; Kang Y
    J Colloid Interface Sci; 2018 Jan; 509():384-394. PubMed ID: 28923735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A phenylboronate-based SERS nanoprobe for detection and imaging of intracellular peroxynitrite.
    Chen HY; Guo D; Gan ZF; Jiang L; Chang S; Li DW
    Mikrochim Acta; 2018 Dec; 186(1):11. PubMed ID: 30535866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of a disulfide reporter molecule for enhancing pH measurements based on surface-enhanced Raman scattering.
    Lawson L; Huser T
    Anal Chem; 2012 Apr; 84(8):3574-80. PubMed ID: 22455337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes.
    Vitol EA; Orynbayeva Z; Bouchard MJ; Azizkhan-Clifford J; Friedman G; Gogotsi Y
    ACS Nano; 2009 Nov; 3(11):3529-36. PubMed ID: 19891490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myoglobin and Polydopamine-Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells.
    Kumar S; Kumar A; Kim GH; Rhim WK; Hartman KL; Nam JM
    Small; 2017 Nov; 13(43):. PubMed ID: 28902980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering.
    Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR
    Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery.
    Jiang P; Hu Y; Li G
    Talanta; 2019 Aug; 200():212-217. PubMed ID: 31036175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels.
    Azadbakht A; Roushani M; Abbasi AR; Derikvand Z
    Anal Biochem; 2016 Nov; 512():58-69. PubMed ID: 27515992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.