These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32600052)

  • 1. Loss of membrane asymmetry alters the interactions of erythrocytes with engineered silica nanoparticles.
    Bigdelou P; Vahedi A; Kiosidou E; Farnoud AM
    Biointerphases; 2020 Jun; 15(4):041001. PubMed ID: 32600052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity.
    Yu T; Malugin A; Ghandehari H
    ACS Nano; 2011 Jul; 5(7):5717-28. PubMed ID: 21630682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model system to study the influence of aggregation on the hemolytic potential of silica nanoparticles.
    Thomassen LC; Rabolli V; Masschaele K; Alberto G; Tomatis M; Ghiazza M; Turci F; Breynaert E; Martra G; Kirschhock CE; Martens JA; Lison D; Fubini B
    Chem Res Toxicol; 2011 Nov; 24(11):1869-75. PubMed ID: 21928780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models.
    Nazemidashtarjandi S; Vahedi A; Farnoud AM
    Langmuir; 2020 May; 36(18):4923-4932. PubMed ID: 32312045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking red blood cell lipid membrane to enhance the hemocompatibility of large-pore mesoporous silica.
    Roggers RA; Joglekar M; Valenstein JS; Trewyn BG
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1675-81. PubMed ID: 24417657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity.
    Lin YS; Haynes CL
    J Am Chem Soc; 2010 Apr; 132(13):4834-42. PubMed ID: 20230032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ion doping in silica-based nanoparticles on the hemolytic and oxidative activity in contact with human erythrocytes.
    Tsamesidis I; Pouroutzidou GK; Lymperaki E; Kazeli K; Lioutas CB; Christodoulou E; Perio P; Reybier K; Pantaleo A; Kontonasaki E
    Chem Biol Interact; 2020 Feb; 318():108974. PubMed ID: 32032594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of interfacial serum proteins on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages.
    Shinto H; Fukasawa T; Yoshisue K; Tsukamoto N; Aso S; Hirohashi Y; Seto H
    Colloids Surf B Biointerfaces; 2019 Sep; 181():270-277. PubMed ID: 31153022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of Eryptosis in Red Blood Cells Using a Calcium Ionophore.
    Bigdelou P; Farnoud AM
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in Vitro Effect of Polyvinylpyrrolidone and Citrate Coated Silver Nanoparticles on Erythrocytic Oxidative Damage and Eryptosis.
    Ferdous Z; Beegam S; Tariq S; Ali BH; Nemmar A
    Cell Physiol Biochem; 2018; 49(4):1577-1588. PubMed ID: 30223265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.
    Braun K; Pochert A; Lindén M; Davoudi M; Schmidtchen A; Nordström R; Malmsten M
    J Colloid Interface Sci; 2016 Aug; 475():161-170. PubMed ID: 27174622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Features for Mesoporous Silica Nanoparticles Encapsulated into Erythrocytes.
    Chen ZA; Wu SH; Chen P; Chen YP; Mou CY
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4790-4798. PubMed ID: 30624037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eryptosis Indices as a Novel Predictive Parameter for Biocompatibility of Fe3O4 Magnetic Nanoparticles on Erythrocytes.
    Ran Q; Xiang Y; Liu Y; Xiang L; Li F; Deng X; Xiao Y; Chen L; Chen L; Li Z
    Sci Rep; 2015 Nov; 5():16209. PubMed ID: 26537855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anidulafungin-Induced Suicidal Erythrocyte Death.
    Peter T; Bissinger R; Liu G; Lang F
    Cell Physiol Biochem; 2016; 38(6):2272-84. PubMed ID: 27197532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation.
    Alfhili MA; Weidner DA; Lee MH
    Chemosphere; 2019 Aug; 229():103-111. PubMed ID: 31078025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane.
    Liu Y; Zhang Z; Zhang Q; Baker GL; Worden RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):429-37. PubMed ID: 24060565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of cellular uptake of genotoxic silica nanoparticles.
    Mu Q; Hondow NS; Krzemiński L; Brown AP; Jeuken LJ; Routledge MN
    Part Fibre Toxicol; 2012 Jul; 9():29. PubMed ID: 22823932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triggering of Eryptosis, the Suicidal Erythrocyte Death by Mammalian Target of Rapamycin (mTOR) inhibitor Temsirolimus.
    Al Mamun Bhuyan A; Cao H; Lang F
    Cell Physiol Biochem; 2017; 42(4):1575-1591. PubMed ID: 28793293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native silica nanoparticles are powerful membrane disruptors.
    Alkhammash HI; Li N; Berthier R; de Planque MR
    Phys Chem Chem Phys; 2015 Jun; 17(24):15547-60. PubMed ID: 25623776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.