These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
719 related articles for article (PubMed ID: 32600201)
1. Data for registry and quality review can be retrospectively collected using natural language processing from unstructured charts of arthroplasty patients. Shah RF; Bini S; Vail T Bone Joint J; 2020 Jul; 102-B(7_Supple_B):99-104. PubMed ID: 32600201 [TBL] [Abstract][Full Text] [Related]
2. Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Total Hip Arthroplasty. Wyles CC; Tibbo ME; Fu S; Wang Y; Sohn S; Kremers WK; Berry DJ; Lewallen DG; Maradit-Kremers H J Bone Joint Surg Am; 2019 Nov; 101(21):1931-1938. PubMed ID: 31567670 [TBL] [Abstract][Full Text] [Related]
3. Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Knee Arthroplasty. Sagheb E; Ramazanian T; Tafti AP; Fu S; Kremers WK; Berry DJ; Lewallen DG; Sohn S; Maradit Kremers H J Arthroplasty; 2021 Mar; 36(3):922-926. PubMed ID: 33051119 [TBL] [Abstract][Full Text] [Related]
4. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures. Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741 [TBL] [Abstract][Full Text] [Related]
5. External Validation of Natural Language Processing Algorithms to Extract Common Data Elements in THA Operative Notes. Wyles CC; Fu S; Odum SL; Rowe T; Habet NA; Berry DJ; Lewallen DG; Maradit-Kremers H; Sohn S; Springer BD J Arthroplasty; 2023 Oct; 38(10):2081-2084. PubMed ID: 36280160 [TBL] [Abstract][Full Text] [Related]
6. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery. Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557 [TBL] [Abstract][Full Text] [Related]
8. Building large-scale registries from unstructured clinical notes using a low-resource natural language processing pipeline. Tavabi N; Pruneski J; Golchin S; Singh M; Sanborn R; Heyworth B; Landschaft A; Kimia A; Kiapour A Artif Intell Med; 2024 May; 151():102847. PubMed ID: 38658131 [TBL] [Abstract][Full Text] [Related]
9. Can We Geographically Validate a Natural Language Processing Algorithm for Automated Detection of Incidental Durotomy Across Three Independent Cohorts From Two Continents? Karhade AV; Oosterhoff JHF; Groot OQ; Agaronnik N; Ehresman J; Bongers MER; Jaarsma RL; Poonnoose SI; Sciubba DM; Tobert DG; Doornberg JN; Schwab JH Clin Orthop Relat Res; 2022 Sep; 480(9):1766-1775. PubMed ID: 35412473 [TBL] [Abstract][Full Text] [Related]
10. Multicenter Validation of Natural Language Processing Algorithms for the Detection of Common Data Elements in Operative Notes for Total Hip Arthroplasty: Algorithm Development and Validation. Han P; Fu S; Kolis J; Hughes R; Hallstrom BR; Carvour M; Maradit-Kremers H; Sohn S; Vydiswaran VGV JMIR Med Inform; 2022 Aug; 10(8):e38155. PubMed ID: 36044253 [TBL] [Abstract][Full Text] [Related]
11. Automated Detection of Periprosthetic Joint Infections and Data Elements Using Natural Language Processing. Fu S; Wyles CC; Osmon DR; Carvour ML; Sagheb E; Ramazanian T; Kremers WK; Lewallen DG; Berry DJ; Sohn S; Kremers HM J Arthroplasty; 2021 Feb; 36(2):688-692. PubMed ID: 32854996 [TBL] [Abstract][Full Text] [Related]
12. Medication Extraction from Electronic Clinical Notes in an Integrated Health System: A Study on Aspirin Use in Patients with Nonvalvular Atrial Fibrillation. Zheng C; Rashid N; Koblick R; An J Clin Ther; 2015 Sep; 37(9):2048-2058.e2. PubMed ID: 26233471 [TBL] [Abstract][Full Text] [Related]
13. Natural Language Processing of Clinical Notes to Identify Mental Illness and Substance Use Among People Living with HIV: Retrospective Cohort Study. Ridgway JP; Uvin A; Schmitt J; Oliwa T; Almirol E; Devlin S; Schneider J JMIR Med Inform; 2021 Mar; 9(3):e23456. PubMed ID: 33688848 [TBL] [Abstract][Full Text] [Related]
14. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data. Sezgin E; Hussain SA; Rust S; Huang Y JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467 [TBL] [Abstract][Full Text] [Related]
15. Discerning tumor status from unstructured MRI reports--completeness of information in existing reports and utility of automated natural language processing. Cheng LT; Zheng J; Savova GK; Erickson BJ J Digit Imaging; 2010 Apr; 23(2):119-32. PubMed ID: 19484309 [TBL] [Abstract][Full Text] [Related]
16. Automated Travel History Extraction From Clinical Notes for Informing the Detection of Emergent Infectious Disease Events: Algorithm Development and Validation. Peterson KS; Lewis J; Patterson OV; Chapman AB; Denhalter DW; Lye PA; Stevens VW; Gamage SD; Roselle GA; Wallace KS; Jones M JMIR Public Health Surveill; 2021 Mar; 7(3):e26719. PubMed ID: 33759790 [TBL] [Abstract][Full Text] [Related]
17. Natural language processing for automated detection of incidental durotomy. Karhade AV; Bongers MER; Groot OQ; Kazarian ER; Cha TD; Fogel HA; Hershman SH; Tobert DG; Schoenfeld AJ; Bono CM; Kang JD; Harris MB; Schwab JH Spine J; 2020 May; 20(5):695-700. PubMed ID: 31877390 [TBL] [Abstract][Full Text] [Related]
18. Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing. Sivarajkumar S; Tam TYC; Mohammad HA; Viggiano S; Oniani D; Visweswaran S; Wang Y J Am Med Inform Assoc; 2024 Oct; 31(10):2217-2227. PubMed ID: 39001795 [TBL] [Abstract][Full Text] [Related]
19. Development and early findings of a semiautomated arthroplasty registry in a multi-institutional healthcare network. Florissi I; Galea VP; Sauder N; Colon Iban Y; Heng M; Ahmed FK; Malchau H; Bragdon CR Bone Joint J; 2020 Jul; 102-B(7_Supple_B):90-98. PubMed ID: 32600193 [TBL] [Abstract][Full Text] [Related]
20. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records. Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]