These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32600525)
21. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Ethier GJ; Livingston NJ; Harrison DL; Black TA; Moran JA Plant Cell Environ; 2006 Dec; 29(12):2168-84. PubMed ID: 17081250 [TBL] [Abstract][Full Text] [Related]
22. CO Pang Y; Liao Q; Peng H; Qian C; Wang F Planta; 2023 Jun; 258(1):11. PubMed ID: 37289402 [TBL] [Abstract][Full Text] [Related]
23. Effects of light environments within Leng HB; Wan NH; Liu QL Ying Yong Sheng Tai Xue Bao; 2023 Aug; 34(8):2113-2122. PubMed ID: 37681375 [TBL] [Abstract][Full Text] [Related]
24. Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaved species in a temperate deciduous forest. Miyazawa Y; Kikuzawa K Tree Physiol; 2006 Feb; 26(2):249-56. PubMed ID: 16356922 [TBL] [Abstract][Full Text] [Related]
25. A meta-analysis of mesophyll conductance to CO2 in relation to major abiotic stresses in poplar species. Elferjani R; Benomar L; Momayyezi M; Tognetti R; Niinemets Ü; Soolanayakanahally RY; Théroux-Rancourt G; Tosens T; Ripullone F; Bilodeau-Gauthier S; Lamhamedi MS; Calfapietra C; Lamara M J Exp Bot; 2021 May; 72(12):4384-4400. PubMed ID: 33739415 [TBL] [Abstract][Full Text] [Related]
26. Effects of elevated O Yu H; Cao J; Chen Z; Shang H Environ Pollut; 2018 Mar; 234():716-725. PubMed ID: 29245146 [TBL] [Abstract][Full Text] [Related]
27. Mesophyll conductance does not contribute to greater photosynthetic rate per unit nitrogen in temperate compared with tropical evergreen wet-forest tree leaves. Bahar NHA; Hayes L; Scafaro AP; Atkin OK; Evans JR New Phytol; 2018 Apr; 218(2):492-505. PubMed ID: 29436710 [TBL] [Abstract][Full Text] [Related]
28. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Dreyer E; Le Roux X; Montpied P; Daudet FA; Masson F Tree Physiol; 2001 Mar; 21(4):223-32. PubMed ID: 11276416 [TBL] [Abstract][Full Text] [Related]
29. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Zhou S; Medlyn B; Sabaté S; Sperlich D; Prentice IC Tree Physiol; 2014 Oct; 34(10):1035-46. PubMed ID: 25192884 [TBL] [Abstract][Full Text] [Related]
30. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest. Meng F; Cao R; Yang D; Niklas KJ; Sun S Tree Physiol; 2013 Jul; 33(7):753-62. PubMed ID: 23933830 [TBL] [Abstract][Full Text] [Related]
31. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Herrick JD; Thomas RB Tree Physiol; 2003 Feb; 23(2):109-18. PubMed ID: 12533305 [TBL] [Abstract][Full Text] [Related]
32. Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x euroamericana in a mini-stand experiment. Ripullone F; Grassi G; Lauteri M; Borghetti M Tree Physiol; 2003 Feb; 23(2):137-44. PubMed ID: 12533308 [TBL] [Abstract][Full Text] [Related]
33. Carbon dioxide and light curves and leaf gas exchange responses to shade levels in bell pepper (Capsicum annuum L.). Kabir MY; Nambeesan SU; Díaz-Pérez JC Plant Sci; 2023 Jan; 326():111532. PubMed ID: 36347336 [TBL] [Abstract][Full Text] [Related]
34. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model. André MJ Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764 [TBL] [Abstract][Full Text] [Related]
35. Co-regulation of photosynthetic processes under potassium deficiency across CO Singh SK; Reddy VR Photosynth Res; 2018 Aug; 137(2):183-200. PubMed ID: 29478203 [TBL] [Abstract][Full Text] [Related]
36. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Sefcik LT; Zak DR; Ellsworth DS Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898 [TBL] [Abstract][Full Text] [Related]
37. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). Hieke S; Menzel CM; Lüdders P Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578 [TBL] [Abstract][Full Text] [Related]
38. Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes). Whitehead D; Barbour MM; Griffin KL; Turnbull MH; Tissue DT Tree Physiol; 2011 Sep; 31(9):985-96. PubMed ID: 21515907 [TBL] [Abstract][Full Text] [Related]
39. Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone. Xu Y; Feng Z; Shang B; Dai L; Uddling J; Tarvainen L Sci Total Environ; 2019 Mar; 657():136-145. PubMed ID: 30537576 [TBL] [Abstract][Full Text] [Related]
40. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees. Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD Ann Bot; 2006 Jul; 98(1):267-75. PubMed ID: 16735404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]