These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 32600681)
1. Effects of chitosan-loaded hydroxyapatite on osteoblasts and osteosarcoma for chemopreventative applications. Koski C; Vu AA; Bose S Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111041. PubMed ID: 32600681 [TBL] [Abstract][Full Text] [Related]
2. Cytotoxic and osteogenic effects of crocin and bicarbonate from calcium phosphates for potential chemopreventative and anti-inflammatory applications in vitro and in vivo. Koski C; Sarkar N; Bose S J Mater Chem B; 2020 Mar; 8(10):2048-2062. PubMed ID: 32064472 [TBL] [Abstract][Full Text] [Related]
3. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
4. Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth. Bose S; Sarkar N; Vahabzadeh S Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110096. PubMed ID: 31546344 [TBL] [Abstract][Full Text] [Related]
5. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Iqbal H; Ali M; Zeeshan R; Mutahir Z; Iqbal F; Nawaz MAH; Shahzadi L; Chaudhry AA; Yar M; Luan S; Khan AF; Rehman IU Colloids Surf B Biointerfaces; 2017 Dec; 160():553-563. PubMed ID: 29024920 [TBL] [Abstract][Full Text] [Related]
6. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. Gritsch L; Maqbool M; Mouriño V; Ciraldo FE; Cresswell M; Jackson PR; Lovell C; Boccaccini AR J Mater Chem B; 2019 Oct; 7(40):6109-6124. PubMed ID: 31549696 [TBL] [Abstract][Full Text] [Related]
7. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Przekora A; Ginalska G Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067 [TBL] [Abstract][Full Text] [Related]
8. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
9. Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite. Zeng J; Xiong S; Ding L; Zhou J; Li J; Qiu P; Liao X; Xiong L; Long Z; Liu S Life Sci; 2019 Oct; 234():116743. PubMed ID: 31408660 [TBL] [Abstract][Full Text] [Related]
10. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
13. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Uswatta SP; Okeke IU; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741 [TBL] [Abstract][Full Text] [Related]
14. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Przekora A; Benko A; Blazewicz M; Ginalska G Biomed Mater; 2016 Jul; 11(4):045001. PubMed ID: 27388048 [TBL] [Abstract][Full Text] [Related]
15. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. Shahriarpanah S; Nourmohammadi J; Amoabediny G Int J Biol Macromol; 2016 Dec; 93(Pt A):1069-1078. PubMed ID: 27664924 [TBL] [Abstract][Full Text] [Related]
17. Bio-Functionalized Chitosan for Bone Tissue Engineering. Brun P; Zamuner A; Battocchio C; Cassari L; Todesco M; Graziani V; Iucci G; Marsotto M; Tortora L; Secchi V; Dettin M Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072888 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Dong Y; Liang J; Cui Y; Xu S; Zhao N Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604 [TBL] [Abstract][Full Text] [Related]
19. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Yang F; Lu J; Ke Q; Peng X; Guo Y; Xie X Sci Rep; 2018 May; 8(1):7345. PubMed ID: 29743489 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and Characterization of Poly(Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration. Pineda-Castillo S; Bernal-Ballén A; Bernal-López C; Segura-Puello H; Nieto-Mosquera D; Villamil-Ballesteros A; Muñoz-Forero D; Munster L Molecules; 2018 Sep; 23(10):. PubMed ID: 30241366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]