BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32601205)

  • 41. Study of Protein Amyloid-Like Aggregates by Solid-State Circular Dichroism Spectroscopy.
    Hu HY; Jiang LL; Hong JY
    Curr Protein Pept Sci; 2017; 18(1):100-103. PubMed ID: 27396751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping.
    Wahlbom M; Wang X; Lindström V; Carlemalm E; Jaskolski M; Grubb A
    J Biol Chem; 2007 Jun; 282(25):18318-18326. PubMed ID: 17470433
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solution structure of a human cystatin A variant, cystatin A2-98 M65L, by NMR spectroscopy. A possible role of the interactions between the N- and C-termini to maintain the inhibitory active form of cystatin A.
    Tate S; Ushioda T; Utsunomiya-Tate N; Shibuya K; Ohyama Y; Nakano Y; Kaji H; Inagaki F; Samejima T; Kainosho M
    Biochemistry; 1995 Nov; 34(45):14637-48. PubMed ID: 7578072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A covalent homodimer probing early oligomers along amyloid aggregation.
    Halabelian L; Relini A; Barbiroli A; Penco A; Bolognesi M; Ricagno S
    Sci Rep; 2015 Sep; 5():14651. PubMed ID: 26420657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Expression of the cystatin-related epididymal spermatogenic gene in mouse testes and epididymis at different postnatal stages].
    Yuan Q; Xu C; Zhang X; Chen H; Wang Y
    Zhonghua Nan Ke Xue; 2004 Mar; 10(3):168-71. PubMed ID: 15080057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Domain swapping in N-truncated human cystatin C.
    Janowski R; Abrahamson M; Grubb A; Jaskolski M
    J Mol Biol; 2004 Jul; 341(1):151-60. PubMed ID: 15312769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solution-state NMR assignment and secondary structure propensity of the full length and minimalistic-truncated prefibrillar monomeric form of biofilm forming functional amyloid FapC from Pseudomonas aeruginosa.
    Byeon CH; Wang PC; Byeon IL; Akbey Ü
    Biomol NMR Assign; 2023 Dec; 17(2):159-165. PubMed ID: 37162737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antimicrobial activity and molecular mechanism of the CRES protein.
    Wang L; Yuan Q; Chen S; Cai H; Lu M; Liu Y; Xu C
    PLoS One; 2012; 7(11):e48368. PubMed ID: 23185254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. (-)-epigallocatechin-3-gallate inhibits fibrillogenesis of chicken cystatin.
    Wang N; He J; Chang AK; Wang Y; Xu L; Chong X; Lu X; Sun Y; Xia X; Li H; Zhang B; Song Y; Kato A; Jones GW
    J Agric Food Chem; 2015 Feb; 63(5):1347-51. PubMed ID: 25620201
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Folding and Aggregation Energy Landscapes of Tethered RRM Domains of Human TDP-43 Are Coupled via a Metastable Molten Globule-like Oligomer.
    Pillai M; Jha SK
    Biochemistry; 2019 Feb; 58(6):608-620. PubMed ID: 30520297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular architecture of bacterial amyloids in
    El Mammeri N; Hierrezuelo J; Tolchard J; Cámara-Almirón J; Caro-Astorga J; Álvarez-Mena A; Dutour A; Berbon M; Shenoy J; Morvan E; Grélard A; Kauffmann B; Lecomte S; de Vicente A; Habenstein B; Romero D; Loquet A
    FASEB J; 2019 Nov; 33(11):12146-12163. PubMed ID: 31370706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of Amyloid Fibrils for Magic-Angle Spinning Solid-State NMR Spectroscopy.
    Tuttle MD; Courtney JM; Barclay AM; Rienstra CM
    Methods Mol Biol; 2016; 1345():173-83. PubMed ID: 26453212
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Age-dependent expression of the cystatin-related epididymal spermatogenic (Cres) gene in mouse testis and epididymis.
    Yuan Q; Guo QS; Cornwall GA; Xu C; Wang YF
    Asian J Androl; 2007 May; 9(3):305-11. PubMed ID: 17486270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cystatin-related epididymal spermatogenic protein inhibits the serine protease prohormone convertase 2.
    Cornwall GA; Cameron A; Lindberg I; Hardy DM; Cormier N; Hsia N
    Endocrinology; 2003 Mar; 144(3):901-8. PubMed ID: 12586766
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glycosaminoglycans Induce Amyloid Self-Assembly of a Peptide Hormone by Concerted Secondary and Quaternary Conformational Transitions.
    Sebastiao M; Quittot N; Marcotte I; Bourgault S
    Biochemistry; 2019 Mar; 58(9):1214-1225. PubMed ID: 30720275
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solid-State NMR Reveals the Structural Transformation of the TDP-43 Amyloidogenic Region upon Fibrillation.
    Zhuo XF; Wang J; Zhang J; Jiang LL; Hu HY; Lu JX
    J Am Chem Soc; 2020 Feb; 142(7):3412-3421. PubMed ID: 32003979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amyloid fibril formation by human stefins: Structure, mechanism & putative functions.
    Zerovnik E; Staniforth RA; Turk D
    Biochimie; 2010 Nov; 92(11):1597-607. PubMed ID: 20685229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation.
    Bhasne K; Mukhopadhyay S
    Proteomics; 2018 Nov; 18(21-22):e1800059. PubMed ID: 30216674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The expanding amyloid family: Structure, stability, function, and pathogenesis.
    Sawaya MR; Hughes MP; Rodriguez JA; Riek R; Eisenberg DS
    Cell; 2021 Sep; 184(19):4857-4873. PubMed ID: 34534463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.