BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32601426)

  • 1. Optogenetic control of gene expression in plants in the presence of ambient white light.
    Ochoa-Fernandez R; Abel NB; Wieland FG; Schlegel J; Koch LA; Miller JB; Engesser R; Giuriani G; Brandl SM; Timmer J; Weber W; Ott T; Simon R; Zurbriggen MD
    Nat Methods; 2020 Jul; 17(7):717-725. PubMed ID: 32601426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.
    Ochoa-Fernandez R; Samodelov SL; Brandl SM; Wehinger E; Müller K; Weber W; Zurbriggen MD
    Methods Mol Biol; 2016; 1408():125-39. PubMed ID: 26965120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research.
    Omelina ES; Yushkova AA; Motorina DM; Volegov GA; Kozhevnikova EN; Pindyurin AV
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green Light-Controlled Gene Switch for Mammalian and Plant Cells.
    Schneider N; Chatelle CV; Ochoa-Fernandez R; Zurbriggen MD; Weber W
    Methods Mol Biol; 2021; 2312():89-107. PubMed ID: 34228286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells.
    Chatelle C; Ochoa-Fernandez R; Engesser R; Schneider N; Beyer HM; Jones AR; Timmer J; Zurbriggen MD; Weber W
    ACS Synth Biol; 2018 May; 7(5):1349-1358. PubMed ID: 29634242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
    Reade A; Motta-Mena LB; Gardner KH; Stainier DY; Weiner OD; Woo S
    Development; 2017 Jan; 144(2):345-355. PubMed ID: 27993986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Manipulating Living Systems by Light].
    Sato M
    Yakugaku Zasshi; 2020; 140(8):993-1000. PubMed ID: 32741873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A red light-controlled synthetic gene expression switch for plant systems.
    Müller K; Siegel D; Rodriguez Jahnke F; Gerrer K; Wend S; Decker EL; Reski R; Weber W; Zurbriggen MD
    Mol Biosyst; 2014 Jul; 10(7):1679-88. PubMed ID: 24469598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development and application of optogenetic tools].
    Wei Q; Xu C; Wang M; Ye H
    Sheng Wu Gong Cheng Xue Bao; 2019 Dec; 35(12):2238-2256. PubMed ID: 31880133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Free Optogenetic Gene Expression System.
    Jayaraman P; Yeoh JW; Jayaraman S; Teh AY; Zhang J; Poh CL
    ACS Synth Biol; 2018 Apr; 7(4):986-994. PubMed ID: 29596741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue Light-Operated CRISPR/Cas13b-Mediated mRNA Knockdown (Lockdown).
    Blomeier T; Fischbach P; Koch LA; Andres J; Miñambres M; Beyer HM; Zurbriggen MD
    Adv Biol (Weinh); 2021 May; 5(5):e2000307. PubMed ID: 34028208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highlighter: An optogenetic system for high-resolution gene expression control in plants.
    Larsen B; Hofmann R; Camacho IS; Clarke RW; Lagarias JC; Jones AR; Jones AM
    PLoS Biol; 2023 Sep; 21(9):e3002303. PubMed ID: 37733664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.
    Polstein LR; Gersbach CA
    Nat Chem Biol; 2015 Mar; 11(3):198-200. PubMed ID: 25664691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.
    Baaske J; Gonschorek P; Engesser R; Dominguez-Monedero A; Raute K; Fischbach P; Müller K; Cachat E; Schamel WWA; Minguet S; Davies JA; Timmer J; Weber W; Zurbriggen MD
    Sci Rep; 2018 Oct; 8(1):15024. PubMed ID: 30301909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP
    Kyriakakis P; Catanho M; Hoffner N; Thavarajah W; Hu VJ; Chao SS; Hsu A; Pham V; Naghavian L; Dozier LE; Patrick GN; Coleman TP
    ACS Synth Biol; 2018 Feb; 7(2):706-717. PubMed ID: 29301067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.
    Park JJ; Dempewolf E; Zhang W; Wang ZY
    PLoS One; 2017; 12(6):e0179410. PubMed ID: 28622347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetics in plants.
    Christie JM; Zurbriggen MD
    New Phytol; 2021 Mar; 229(6):3108-3115. PubMed ID: 33064858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant optogenetics: Applications and perspectives.
    Shikata H; Denninger P
    Curr Opin Plant Biol; 2022 Aug; 68():102256. PubMed ID: 35780691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.