These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Li F; Zhang S; Yang T; Xu Z; Zhang N; Liu G; Wang J; Wang J; Cheng Z; Ye ZG; Luo J; Shrout TR; Chen LQ Nat Commun; 2016 Dec; 7():13807. PubMed ID: 27991504 [TBL] [Abstract][Full Text] [Related]
5. Giant dynamic electromechanical response via field driven pseudo-ergodicity in nonergodic relaxors. Qi H; Hu T; Deng S; Liu H; Fu Z; Chen J Nat Commun; 2023 Apr; 14(1):2414. PubMed ID: 37105995 [TBL] [Abstract][Full Text] [Related]
6. Decoupling Mesoscale Functional Response in PLZT across the Ferroelectric-Relaxor Phase Transition with Contact Kelvin Probe Force Microscopy and Machine Learning. Neumayer SM; Collins L; Vasudevan R; Smith C; Somnath S; Shur VY; Jesse S; Kholkin AL; Kalinin SV; Rodriguez BJ ACS Appl Mater Interfaces; 2018 Dec; 10(49):42674-42680. PubMed ID: 30457324 [TBL] [Abstract][Full Text] [Related]
7. Highly elastic relaxor ferroelectrics for wearable energy storage. Gao L; Zhang J; Wang L; Zhang D; Li F; Shen H; Hu BL; Li RW Mater Horiz; 2024 Nov; 11(23):6150-6157. PubMed ID: 39354842 [TBL] [Abstract][Full Text] [Related]
8. Advantages and Challenges of Relaxor-PbTiO Zhang S; Li F; Jiang X; Kim J; Luo J; Geng X Prog Mater Sci; 2015 Mar; 68():1-66. PubMed ID: 25530641 [TBL] [Abstract][Full Text] [Related]
10. Elastic Relaxor Ferroelectric by Thiol-ene Click Reaction. Li B; Wang L; Gao L; Xu T; Zhang D; Li F; Lyu J; Zhu R; Gao X; Zhang H; Hu BL; Li RW Angew Chem Int Ed Engl; 2024 May; 63(19):e202400511. PubMed ID: 38488202 [TBL] [Abstract][Full Text] [Related]
11. High electrocaloric cooling power of relaxor ferroelectric BaZr Qian J; Hu P; Liu C; Jiang J; Dan Z; Ma J; Lin Y; Nan CW; Shen Y Sci Bull (Beijing); 2018 Mar; 63(6):356-361. PubMed ID: 36658872 [TBL] [Abstract][Full Text] [Related]
12. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Kumar A; Baker JN; Bowes PC; Cabral MJ; Zhang S; Dickey EC; Irving DL; LeBeau JM Nat Mater; 2021 Jan; 20(1):62-67. PubMed ID: 32895506 [TBL] [Abstract][Full Text] [Related]
13. Losses in Ferroelectric Materials. Liu G; Zhang S; Jiang W; Cao W Mater Sci Eng R Rep; 2015 Mar; 89():1-48. PubMed ID: 25814784 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of a New Ferroelectric Relaxor Based on a Combination of Antiferroelectric and Paraelectric Systems. Ma CH; Liao YK; Zheng Y; Zhuang S; Lu SC; Shao PW; Chen JW; Lai YH; Yu P; Hu JM; Huang R; Chu YH ACS Appl Mater Interfaces; 2022 May; 14(19):22278-22286. PubMed ID: 35523210 [TBL] [Abstract][Full Text] [Related]
15. Visualization of polar nanoregions in lead-free relaxors via piezoresponse force microscopy in torsional dual AC resonance tracking mode. Liu N; Dittmer R; Stark RW; Dietz C Nanoscale; 2015 Jul; 7(27):11787-96. PubMed ID: 26106953 [TBL] [Abstract][Full Text] [Related]
16. Electric field and mechanical stress driven structural inhomogeneity and compositionally induced relaxor phase transformation in modified BaTiO Pal S; Swain AB; N V S; Murugavel P J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32357355 [TBL] [Abstract][Full Text] [Related]