These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32601486)

  • 1. Formation and functionalization of membraneless compartments in Escherichia coli.
    Wei SP; Qian ZG; Hu CF; Pan F; Chen MT; Lee SY; Xia XX
    Nat Chem Biol; 2020 Oct; 16(10):1143-1148. PubMed ID: 32601486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-Separated Synthetic Organelles Based on Intrinsically Disordered Protein Domain for Metabolic Pathway Assembly in
    Wan L; Zhu Y; Zhang W; Mu W
    ACS Nano; 2023 Jun; 17(11):10806-10816. PubMed ID: 37191277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of subcellular compartments by condensation-prone protein OsJAZ2 in Oryza sativa and Nicotiana benthamiana leaf cells.
    Koja Y; Joshima Y; Yoritaka Y; Arakawa T; Go H; Hakamata N; Kaseda H; Hattori T; Takeda S
    Plant Cell Rep; 2023 Feb; 42(2):269-286. PubMed ID: 36449075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially Directed Biosynthesis of Quantum Dots via Spidroin Templating in Escherichia coli.
    Chen MT; Hu CF; Huang HB; Qian ZG; Xia XX
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202214177. PubMed ID: 36251431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments.
    Huber MC; Schreiber A; von Olshausen P; Varga BR; Kretz O; Joch B; Barnert S; Schubert R; Eimer S; Kele P; Schiller SM
    Nat Mater; 2015 Jan; 14(1):125-32. PubMed ID: 25362355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in design and application of synthetic membraneless organelles.
    Wan L; Zhu Y; Zhang W; Mu W
    Biotechnol Adv; 2024; 73():108355. PubMed ID: 38588907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
    Yeong V; Werth EG; Brown LM; Obermeyer AC
    ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.
    Zhao YG; Zhang H
    Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird's-Eye View.
    Fefilova AS; Fonin AV; Vishnyakov IE; Kuznetsova IM; Turoverov KK
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes.
    Hoffmann C; Milovanovic D
    J Cell Sci; 2023 Dec; 136(24):. PubMed ID: 38149872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming protein phase-separation employing a modular library of intrinsically disordered precision block copolymer-like proteins creating dynamic cytoplasmatic compartmentalization.
    Huber MC; Schreiber A; Stühn LG; Schiller SM
    Biomaterials; 2023 Aug; 299():122165. PubMed ID: 37290157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free Expressed Membraneless Organelles Inhibit Translation in Synthetic Cells.
    Robinson AO; Lee J; Cameron A; Keating CD; Adamala KP
    ACS Biomater Sci Eng; 2024 Feb; 10(2):773-781. PubMed ID: 38226971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes.
    Cummings CS; Obermeyer AC
    Biochemistry; 2018 Jan; 57(3):314-323. PubMed ID: 29210575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression.
    Peng Q; Wang L; Qin Z; Wang J; Zheng X; Wei L; Zhang X; Zhang X; Liu C; Li Z; Wu Y; Li G; Yan Q; Ma J
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31941785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging.
    Chen Y; Yuan M; Zhang Y; Zhou S; Wang K; Wu Z; Liu J
    Biomater Sci; 2022 Aug; 10(16):4588-4595. PubMed ID: 35792669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles.
    Schuster BS; Reed EH; Parthasarathy R; Jahnke CN; Caldwell RM; Bermudez JG; Ramage H; Good MC; Hammer DA
    Nat Commun; 2018 Jul; 9(1):2985. PubMed ID: 30061688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-Liquid Phase Separation in Crowded Environments.
    André AAM; Spruijt E
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial engineering of E. coli with addressable phase-separated RNAs.
    Guo H; Ryan JC; Song X; Mallet A; Zhang M; Pabst V; Decrulle AL; Ejsmont P; Wintermute EH; Lindner AB
    Cell; 2022 Sep; 185(20):3823-3837.e23. PubMed ID: 36179672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The perinuclear region concentrates disordered proteins with predicted phase separation distributed in a 3D network of cytoskeletal filaments and organelles.
    do Amaral MJ; de Andrade Rosa I; Andrade SA; Fang X; Andrade LR; Costa ML; Mermelstein C
    Biochim Biophys Acta Mol Cell Res; 2022 Jan; 1869(1):119161. PubMed ID: 34655689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.