These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32601688)
1. The Effect of the Loading Rate on the Full-Field Strain Distribution on the Surface on the Intervertebral Discs. Maria Luisa R; Luca C J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32601688 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
3. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine. Mörl F; Günther M; Riede JM; Hammer M; Schmitt S Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072 [TBL] [Abstract][Full Text] [Related]
4. The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony features: An in vitro full-field analysis. Palanca M; Ruspi ML; Cristofolini L; Liebsch C; Villa T; Brayda-Bruno M; Galbusera F; Wilke HJ; La Barbera L PLoS One; 2020; 15(1):e0227210. PubMed ID: 31935225 [TBL] [Abstract][Full Text] [Related]
5. Ratcheting Behavior of Intervertebral Discs Under Cyclic Compression: Experiment and Prediction. Zhang CQ; Zhang T; Gao L; Du CF; Liu Q; Liu HY; Wang X Orthop Surg; 2019 Oct; 11(5):895-902. PubMed ID: 31663289 [TBL] [Abstract][Full Text] [Related]
6. Full-field strain distribution in multi-vertebra spine segments: An in vitro application of digital image correlation. Palanca M; Marco M; Ruspi ML; Cristofolini L Med Eng Phys; 2018 Feb; 52():76-83. PubMed ID: 29229402 [TBL] [Abstract][Full Text] [Related]
7. Effect of Strain Rates on Failure of Mechanical Properties of Lumbar Intervertebral Disc Under Flexion. Li K; Zhang SJ; Du CF; Zhao JZ; Liu Q; Zhang CQ; Sun YF Orthop Surg; 2020 Dec; 12(6):1980-1989. PubMed ID: 33200562 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Water Content in Lumbar Intervertebral Discs and Facet Joints Before and After Physiological Loading Using T2 Mapping MRI. Yamabe D; Murakami H; Chokan K; Endo H; Oikawa R; Sawamura S; Doita M Spine (Phila Pa 1976); 2017 Dec; 42(24):E1423-E1428. PubMed ID: 28422800 [TBL] [Abstract][Full Text] [Related]
9. The effect of intervertebral disc damage on the mechanical strength of the annulus fibrosus in the adjacent segment. Chow N; Gregory DE Spine J; 2023 Dec; 23(12):1935-1940. PubMed ID: 37487934 [TBL] [Abstract][Full Text] [Related]
10. Biomechanics of the human intervertebral disc: A review of testing techniques and results. Newell N; Little JP; Christou A; Adams MA; Adam CJ; Masouros SD J Mech Behav Biomed Mater; 2017 May; 69():420-434. PubMed ID: 28262607 [TBL] [Abstract][Full Text] [Related]
11. Mechanical Function of the Nucleus Pulposus of the Intervertebral Disc Under High Rates of Loading. Newell N; Carpanen D; Evans JH; Pearcy MJ; Masouros SD Spine (Phila Pa 1976); 2019 Aug; 44(15):1035-1041. PubMed ID: 31095121 [TBL] [Abstract][Full Text] [Related]
12. Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. Paul CP; Zuiderbaan HA; Zandieh Doulabi B; van der Veen AJ; van de Ven PM; Smit TH; Helder MN; van Royen BJ; Mullender MG PLoS One; 2012; 7(3):e33147. PubMed ID: 22427972 [TBL] [Abstract][Full Text] [Related]
13. The effect of compressive loading rate on annulus fibrosus strength following endplate fracture. McMorran JG; Gregory DE Med Eng Phys; 2021 Jul; 93():17-26. PubMed ID: 34154771 [TBL] [Abstract][Full Text] [Related]
14. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Ryan G; Pandit A; Apatsidis D Clin Biomech (Bristol); 2008 Aug; 23(7):859-69. PubMed ID: 18423954 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of mechanical properties of fresh and frozen-thawed porcine intervertebral discs in a bioreactor environment. Azarnoosh M; Stoffel M; Quack V; Betsch M; Rath B; Tingart M; Markert B J Mech Behav Biomed Mater; 2017 May; 69():169-177. PubMed ID: 28086148 [TBL] [Abstract][Full Text] [Related]
16. [Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression]. Zhu S; Yang X; Luan Y; Liu Q; Zhang C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):590-595. PubMed ID: 31441259 [TBL] [Abstract][Full Text] [Related]
17. The effect of structural changes on the low strain rate behaviour of the intervertebral disc. Hayward S; Keogh PS; Miles AW; Gheduzzi S Proc Inst Mech Eng H; 2024; 238(8-9):851-864. PubMed ID: 39180367 [TBL] [Abstract][Full Text] [Related]
18. Synchrotron tomography of intervertebral disc deformation quantified by digital volume correlation reveals microstructural influence on strain patterns. Disney CM; Eckersley A; McConnell JC; Geng H; Bodey AJ; Hoyland JA; Lee PD; Sherratt MJ; Bay BK Acta Biomater; 2019 Jul; 92():290-304. PubMed ID: 31082569 [TBL] [Abstract][Full Text] [Related]
19. Coupled motions in human and porcine thoracic and lumbar spines. Kingma I; Busscher I; van der Veen AJ; Verkerke GJ; Veldhuizen AG; Homminga J; van Dieën JH J Biomech; 2018 Mar; 70():51-58. PubMed ID: 29246473 [TBL] [Abstract][Full Text] [Related]
20. Failure mechanical properties of lumbar intervertebral disc under high loading rate. Liu Q; Liang XF; Wang AG; Liu Y; Jia TJ; Li K; Zhang CQ J Orthop Surg Res; 2024 Jan; 19(1):15. PubMed ID: 38167031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]