These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1008 related articles for article (PubMed ID: 32602090)
21. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060 [TBL] [Abstract][Full Text] [Related]
22. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting. Kim MH; Lin CC ACS Appl Mater Interfaces; 2023 Jan; 15(2):2737-2746. PubMed ID: 36608274 [TBL] [Abstract][Full Text] [Related]
23. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration. Liang R; Gu Y; Wu Y; Bunpetch V; Zhang S ACS Biomater Sci Eng; 2021 Mar; 7(3):806-816. PubMed ID: 33715367 [TBL] [Abstract][Full Text] [Related]
24. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
25. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490 [TBL] [Abstract][Full Text] [Related]
26. Zhang X; Wu W; Huang Y; Yang X; Gou M Int J Bioprint; 2023; 9(5):760. PubMed ID: 37457931 [TBL] [Abstract][Full Text] [Related]
27. 3D Bioprinting of Self-Standing Silk-Based Bioink. Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585 [TBL] [Abstract][Full Text] [Related]
28. Droplet bioprinting of acellular and cell-laden structures at high-resolutions. Kunwar P; Aryal U; Poudel A; Fougnier D; Geffert ZJ; Xie R; Li Z; Soman P Biofabrication; 2024 May; 16(3):. PubMed ID: 38749419 [TBL] [Abstract][Full Text] [Related]
29. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of silk-based bioink during pre and post 3D bioprinting: A review. Gupta S; Alrabaiah H; Christophe M; Rahimi-Gorji M; Nadeem S; Bit A J Biomed Mater Res B Appl Biomater; 2021 Feb; 109(2):279-293. PubMed ID: 32865306 [TBL] [Abstract][Full Text] [Related]
31. Silk Protein Composite Bioinks and Their 3D Scaffolds and In Vitro Characterization. Li JX; Zhao SX; Zhang YQ Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055092 [TBL] [Abstract][Full Text] [Related]
32. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
33. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mao Q; Wang Y; Li Y; Juengpanich S; Li W; Chen M; Yin J; Fu J; Cai X Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110625. PubMed ID: 32228893 [TBL] [Abstract][Full Text] [Related]
34. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization. Duong VT; Lin CC Macromol Biosci; 2023 Dec; 23(12):e2300213. PubMed ID: 37536347 [TBL] [Abstract][Full Text] [Related]
35. Dityrosine-inspired photocrosslinking technique for 3D printing of silk fibroin-based composite hydrogel scaffolds. Huang Y; Sun G; Lyu L; Li Y; Li D; Fan Q; Yao J; Shao J Soft Matter; 2022 May; 18(19):3705-3712. PubMed ID: 35502755 [TBL] [Abstract][Full Text] [Related]
36. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370 [TBL] [Abstract][Full Text] [Related]
37. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. Singh YP; Bandyopadhyay A; Mandal BB ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678 [TBL] [Abstract][Full Text] [Related]
38. Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins. Wu Z; Liu J; Lin J; Lu L; Tian J; Li L; Zhou C Biomacromolecules; 2022 Jan; 23(1):240-252. PubMed ID: 34931820 [TBL] [Abstract][Full Text] [Related]
39. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting. Dubbin K; Hori Y; Lewis KK; Heilshorn SC Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767 [TBL] [Abstract][Full Text] [Related]
40. Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds. Kumari S; Mondal P; Chatterjee K Carbohydr Polym; 2022 Aug; 290():119508. PubMed ID: 35550782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]