BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32602219)

  • 1. Loss of HDAC11 accelerates skeletal muscle regeneration in mice.
    Núñez-Álvarez Y; Hurtado E; Muñoz M; García-Tuñon I; Rech GE; Pluvinet R; Sumoy L; Pendás AM; Peinado MA; Suelves M
    FEBS J; 2021 Feb; 288(4):1201-1223. PubMed ID: 32602219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDAC11 Regulates the Proliferation of Bovine Muscle Stem Cells through the Notch Signaling Pathway and Inhibits Muscle Regeneration.
    Zhang R; Pan Y; Feng W; Zhao Y; Yang Y; Wang L; Zhang Y; Cheng J; Jiang Q; Zheng Z; Jiang M; Yang S; Deng Y; Shi D; Wei Y
    J Agric Food Chem; 2022 Jul; 70(29):9166-9178. PubMed ID: 35837734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gαi2 signaling is required for skeletal muscle growth, regeneration, and satellite cell proliferation and differentiation.
    Minetti GC; Feige JN; Bombard F; Heier A; Morvan F; Nürnberg B; Leiss V; Birnbaumer L; Glass DJ; Fornaro M
    Mol Cell Biol; 2014 Feb; 34(4):619-30. PubMed ID: 24298018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation.
    Addison WN; Hall KC; Kokabu S; Matsubara T; Fu MM; Gori F; Baron R
    Mol Cell Biol; 2019 Apr; 39(8):. PubMed ID: 30692273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. R3hdml regulates satellite cell proliferation and differentiation.
    Sakamoto K; Furuichi Y; Yamamoto M; Takahashi M; Akimoto Y; Ishikawa T; Shimizu T; Fujimoto M; Takada-Watanabe A; Hayashi A; Mita Y; Manabe Y; Fujii NL; Ishibashi R; Maezawa Y; Betsholtz C; Yokote K; Takemoto M
    EMBO Rep; 2019 Nov; 20(11):e47957. PubMed ID: 31524320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology.
    Cornelison D
    Curr Top Dev Biol; 2018; 126():205-233. PubMed ID: 29304999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?
    Perandini LA; Chimin P; Lutkemeyer DDS; Câmara NOS
    FEBS J; 2018 Jun; 285(11):1973-1984. PubMed ID: 29473995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle.
    Hurtado E; Núñez-Álvarez Y; Muñoz M; Gutiérrez-Caballero C; Casas J; Pendás AM; Peinado MA; Suelves M
    FEBS J; 2021 Feb; 288(3):902-919. PubMed ID: 32563202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7.
    Chen JF; Tao Y; Li J; Deng Z; Yan Z; Xiao X; Wang DZ
    J Cell Biol; 2010 Sep; 190(5):867-79. PubMed ID: 20819939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.
    Tosic M; Allen A; Willmann D; Lepper C; Kim J; Duteil D; Schüle R
    Nat Commun; 2018 Jan; 9(1):366. PubMed ID: 29371665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK.
    Fu X; Zhu M; Zhang S; Foretz M; Viollet B; Du M
    Diabetes; 2016 Jan; 65(1):188-200. PubMed ID: 26384382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration.
    Sreenivasan K; Rodríguez-delaRosa A; Kim J; Mesquita D; Segalés J; Arco PG; Espejo I; Ianni A; Di Croce L; Relaix F; Redondo JM; Braun T; Serrano AL; Perdiguero E; Muñoz-Cánoves P
    Stem Cell Reports; 2021 Sep; 16(9):2089-2098. PubMed ID: 34450038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. USP7-dependent control of myogenin stability is required for terminal differentiation in skeletal muscle progenitors.
    de la Vega E; González N; Cabezas F; Montecino F; Blanco N; Olguín H
    FEBS J; 2020 Nov; 287(21):4659-4677. PubMed ID: 32115872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function.
    Sun C; De Mello V; Mohamed A; Ortuste Quiroga HP; Garcia-Munoz A; Al Bloshi A; Tremblay AM; von Kriegsheim A; Collie-Duguid E; Vargesson N; Matallanas D; Wackerhage H; Zammit PS
    Stem Cells; 2017 Aug; 35(8):1958-1972. PubMed ID: 28589555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes.
    Núñez-Álvarez Y; Suelves M
    FEBS J; 2022 May; 289(10):2771-2792. PubMed ID: 33891374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration.
    Mokalled MH; Johnson AN; Creemers EE; Olson EN
    Genes Dev; 2012 Jan; 26(2):190-202. PubMed ID: 22279050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis.
    Straughn AR; Hindi SM; Xiong G; Kumar A
    J Mol Cell Biol; 2019 Jan; 11(1):53-66. PubMed ID: 30239789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate.
    Lozano-Velasco E; Vallejo D; Esteban FJ; Doherty C; Hernández-Torres F; Franco D; Aránega AE
    Mol Cell Biol; 2015 Sep; 35(17):2892-909. PubMed ID: 26055324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.