These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32602463)

  • 1. Alcids 'fly' at efficient Strouhal numbers in both air and water but vary stroke velocity and angle.
    Lapsansky AB; Zatz D; Tobalske BW
    Elife; 2020 Jun; 9():. PubMed ID: 32602463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient cruising for swimming and flying animals is dictated by fluid drag.
    Floryan D; Van Buren T; Smits AJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8116-8118. PubMed ID: 29915088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upstroke-based acceleration and head stabilization are the norm for the wing-propelled swimming of alcid seabirds.
    Lapsansky AB; Tobalske BW
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31160426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin.
    Watanuki Y; Wanless S; Harris M; Lovvorn JR; Miyazaki M; Tanaka H; Sato K
    J Exp Biol; 2006 Apr; 209(Pt 7):1217-30. PubMed ID: 16547294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex interactions with flapping wings and fins can be unpredictable.
    Lentink D; Van Heijst GF; Muijres FT; Van Leeuwen JL
    Biol Lett; 2010 Jun; 6(3):394-7. PubMed ID: 20129947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical versus physiological determinants of swimming speeds in diving Brünnich's guillemots.
    Lovvorn JR; Croll DA; Liggins GA
    J Exp Biol; 1999 Jul; 202(Pt 13):1741-52. PubMed ID: 10359677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations.
    Ravi S; Noda R; Gagliardi S; Kolomenskiy D; Combes S; Liu H; Biewener AA; Konow N
    Curr Biol; 2020 Jan; 30(2):187-195.e4. PubMed ID: 31902723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins.
    Elliott KH; Ricklefs RE; Gaston AJ; Hatch SA; Speakman JR; Davoren GK
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9380-4. PubMed ID: 23690614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2691-704. PubMed ID: 19648414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW; van Heijst GF; Altshuler DL; Lentink D
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biomechanical origin of extreme wing allometry in hummingbirds.
    Skandalis DA; Segre PS; Bahlman JW; Groom DJE; Welch KC; Witt CC; McGuire JA; Dudley R; Lentink D; Altshuler DL
    Nat Commun; 2017 Oct; 8(1):1047. PubMed ID: 29051535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flap or soar? How a flight generalist responds to its aerial environment.
    Shamoun-Baranes J; Bouten W; van Loon EE; Meijer C; Camphuysen CJ
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima).
    Gough WT; Farina SC; Fish FE
    J Exp Biol; 2015 Jun; 218(Pt 11):1632-8. PubMed ID: 25852065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.