These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms. Siddall R; Kovač M Bioinspir Biomim; 2014 Sep; 9(3):031001. PubMed ID: 24615533 [TBL] [Abstract][Full Text] [Related]
23. Axial propulsion with flapping and rotating wings, a comparison of potential efficiency. Kroninger CM Bioinspir Biomim; 2018 Apr; 13(3):036012. PubMed ID: 29461251 [TBL] [Abstract][Full Text] [Related]
24. The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics. Vejdani HR; Boerma DB; Swartz SM; Breuer KS Bioinspir Biomim; 2018 Nov; 14(1):016003. PubMed ID: 30411710 [TBL] [Abstract][Full Text] [Related]
25. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects. Phan HV; Park HC J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558 [TBL] [Abstract][Full Text] [Related]
26. Whiteflies stabilize their take-off with closed wings. Ribak G; Dafni E; Gerling D J Exp Biol; 2016 Jun; 219(Pt 11):1639-48. PubMed ID: 27045098 [TBL] [Abstract][Full Text] [Related]
27. Lift and power in fruitflies in vertically-ascending flight. Shen C; Liu Y; Sun M Bioinspir Biomim; 2018 Jul; 13(5):056008. PubMed ID: 29985157 [TBL] [Abstract][Full Text] [Related]
29. How the hummingbird wingbeat is tuned for efficient hovering. Ingersoll R; Lentink D J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30323114 [TBL] [Abstract][Full Text] [Related]
30. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Taylor GK; Nudds RL; Thomas AL Nature; 2003 Oct; 425(6959):707-11. PubMed ID: 14562101 [TBL] [Abstract][Full Text] [Related]
31. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298 [TBL] [Abstract][Full Text] [Related]
33. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Bomphrey RJ; Nakata T; Phillips N; Walker SM Nature; 2017 Apr; 544(7648):92-95. PubMed ID: 28355184 [TBL] [Abstract][Full Text] [Related]
34. Wings as impellers: honey bees co-opt flight system to induce nest ventilation and disperse pheromones. Peters JM; Gravish N; Combes SA J Exp Biol; 2017 Jun; 220(Pt 12):2203-2209. PubMed ID: 28404729 [TBL] [Abstract][Full Text] [Related]
35. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. Lindhe Norberg UM; Winter Y J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205 [TBL] [Abstract][Full Text] [Related]
36. Wing rotation and the aerodynamic basis of insect flight. Dickinson MH; Lehmann FO; Sane SP Science; 1999 Jun; 284(5422):1954-60. PubMed ID: 10373107 [TBL] [Abstract][Full Text] [Related]
37. Wing and body kinematics of forward flight in drone-flies. Meng XG; Sun M Bioinspir Biomim; 2016 Aug; 11(5):056002. PubMed ID: 27526336 [TBL] [Abstract][Full Text] [Related]
38. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving. Smith NA; Clarke JA PLoS One; 2012; 7(11):e49584. PubMed ID: 23209585 [TBL] [Abstract][Full Text] [Related]
39. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness. Smith NA; Clarke JA Anat Rec (Hoboken); 2014 Feb; 297(2):188-99. PubMed ID: 24357466 [TBL] [Abstract][Full Text] [Related]
40. Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system. Stewart W; Weisler W; MacLeod M; Powers T; Defreitas A; Gritter R; Anderson M; Peters K; Gopalarathnam A; Bryant M Bioinspir Biomim; 2018 Aug; 13(5):056013. PubMed ID: 30024386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]