These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32602504)

  • 1. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases.
    Jaiswal VK; Segarra-Martí J; Marazzi M; Zvereva E; Assfeld X; Monari A; Garavelli M; Rivalta I
    Phys Chem Chem Phys; 2020 Jul; 22(27):15496-15508. PubMed ID: 32602504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonadiabatic Absorption Spectra and Ultrafast Dynamics of DNA and RNA Photoexcited Nucleobases.
    Green JA; Jouybari MY; Aranda D; Improta R; Santoro F
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33804640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).
    Francés-Monerris A; Segarra-Martí J; Merchán M; Roca-Sanjuán D
    J Chem Phys; 2015 Dec; 143(21):215101. PubMed ID: 26646889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited state absorption of DNA bases in the gas phase and in chloroform solution: a comparative quantum mechanical study.
    Fedotov DA; Paul AC; Koch H; Santoro F; Coriani S; Improta R
    Phys Chem Chem Phys; 2022 Feb; 24(8):4987-5000. PubMed ID: 35142309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled-cluster and density functional theory studies of the electronic 0-0 transitions of the DNA bases.
    Ovchinnikov VA; Sundholm D
    Phys Chem Chem Phys; 2014 Apr; 16(15):6931-41. PubMed ID: 24595333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio determination of the ionization potentials of DNA and RNA nucleobases.
    Roca-Sanjuán D; Rubio M; Merchán M; Serrano-Andrés L
    J Chem Phys; 2006 Aug; 125(8):084302. PubMed ID: 16965007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-covalent interactions: complexes of guanidinium with DNA and RNA nucleobases.
    Blanco F; Kelly B; Sánchez-Sanz G; Trujillo C; Alkorta I; Elguero J; Rozas I
    J Phys Chem B; 2013 Oct; 117(39):11608-16. PubMed ID: 23992551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The determination of absolute electron affinities of the purines and pyrimidines in DNA and RNA from reversible reduction potentials.
    Wiley JR; Robinson JM; Ehdaie S; Chen EC; Chen ES; Wentworth WE
    Biochem Biophys Res Commun; 1991 Oct; 180(2):841-5. PubMed ID: 1719971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleobases as supramolecular motifs.
    Sivakova S; Rowan SJ
    Chem Soc Rev; 2005 Jan; 34(1):9-21. PubMed ID: 15643486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited states behavior of nucleobases in solution: insights from computational studies.
    Improta R; Barone V
    Top Curr Chem; 2015; 355():329-57. PubMed ID: 24647839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of the GSAM approach for the structural investigation of low-lying isomers of molecular clusters from density-functional-theory-based potential energy surfaces: the structures of microhydrated nucleic acid bases.
    Thicoipe S; Carbonniere P; Pouchan C
    J Phys Chem A; 2013 Aug; 117(32):7236-45. PubMed ID: 23577640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study.
    Lin Q; Zou X; Zhou G; Liu R; Wu J; Li J; Duan W
    Phys Chem Chem Phys; 2011 Jul; 13(26):12225-30. PubMed ID: 21637870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine.
    Chen EC; Wiley JR; Chen ES
    Nucleosides Nucleotides Nucleic Acids; 2008 May; 27(5):506-24. PubMed ID: 18569789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Resonances of Nucleobases Using Stabilization Methods.
    Fennimore MA; Matsika S
    J Phys Chem A; 2018 Apr; 122(16):4048-4057. PubMed ID: 29614226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation of nucleobases from a computational perspective I: reaction paths.
    Giussani A; Segarra-Martí J; Roca-Sanjuán D; Merchán M
    Top Curr Chem; 2015; 355():57-97. PubMed ID: 24264958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anhydrous crystals of DNA bases are wide gap semiconductors.
    Maia FF; Freire VN; Caetano EW; Azevedo DL; Sales FA; Albuquerque EL
    J Chem Phys; 2011 May; 134(17):175101. PubMed ID: 21548706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases.
    Barbatti M; Aquino AJ; Szymczak JJ; Nachtigallová D; Hobza P; Lischka H
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21453-8. PubMed ID: 21115845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the aromatic character of the heterocyclic bases of DNA and RNA.
    Cyrański MK; Gilski M; Jaskólski M; Krygowski TM
    J Org Chem; 2003 Oct; 68(22):8607-13. PubMed ID: 14575493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic spectra, excited state structures and interactions of nucleic acid bases and base assemblies: a review.
    Shukla MK; Leszczynski J
    J Biomol Struct Dyn; 2007 Aug; 25(1):93-118. PubMed ID: 17676942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.