These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 32602631)
1. Effect of Remote Substituents on the Torquoselectivity of 3-Silyl Cyclobutene-Derivatives Ring-Opening Reactions. Larrañaga O; de Cózar A Chemphyschem; 2020 Aug; 21(16):1805-1813. PubMed ID: 32602631 [TBL] [Abstract][Full Text] [Related]
2. Origins of inward torquoselectivity by silyl groups and other sigma-acceptors in electrocyclic reactions of cyclobutenes. Lee PS; Zhang X; Houk KN J Am Chem Soc; 2003 Apr; 125(17):5072-9. PubMed ID: 12708857 [TBL] [Abstract][Full Text] [Related]
3. Studies on the thermal ring-opening reactions of cis-3,4-bis(organosilyl)cyclobutenes. Hasegawa M; Murakami M J Org Chem; 2007 May; 72(10):3764-9. PubMed ID: 17432908 [TBL] [Abstract][Full Text] [Related]
4. Mono-, Di-, and Trifluoroalkyl Substituent Effects on the Torquoselectivities of Cyclobutene and Oxetene Electrocyclic Ring Openings. Honda K; Lopez SA; Houk KN; Mikami K J Org Chem; 2015 Dec; 80(23):11768-72. PubMed ID: 26301819 [TBL] [Abstract][Full Text] [Related]
5. Torquoselectivity in Cyclobutene Ring Openings and the Interatomic Interactions That Control Them. Barquera-Lozada JE J Phys Chem A; 2016 Oct; 120(42):8450-8460. PubMed ID: 27723338 [TBL] [Abstract][Full Text] [Related]
6. An orbital phase theory for the torquoselectivity of the ring-opening reactions of 3-substituted cyclobutenes: geminal bond participation. Yasui M; Naruse Y; Inagaki S J Org Chem; 2004 Oct; 69(21):7246-9. PubMed ID: 15471476 [TBL] [Abstract][Full Text] [Related]
7. Substituent effect of group 14 elements on the ring-opening reaction of cyclobutene. Hasegawa M; Usui I; Konno S; Murakami M Org Biomol Chem; 2010 Sep; 8(18):4169-75. PubMed ID: 20664887 [TBL] [Abstract][Full Text] [Related]
8. Substituent effects in pericyclic reactions of radical cations: the ring opening of 3-substituted cyclobutene radical cations. Swinarski DJ; Wiest O J Org Chem; 2000 Oct; 65(20):6708-14. PubMed ID: 11052123 [TBL] [Abstract][Full Text] [Related]
9. Using Ring Strain to Control 4π-Electrocyclization Reactions: Torquoselectivity in Ring Closing of Medium-Ring Dienes and Ring Opening of Bicyclic Cyclobutenes. Boon BA; Green AG; Liu P; Houk KN; Merlic CA J Org Chem; 2017 May; 82(9):4613-4624. PubMed ID: 28407711 [TBL] [Abstract][Full Text] [Related]
10. Reactions of sterically congested 1,5-hexadienes: Ab initio and DFT calculations on the competition between cope rearrangements and disrotatory cyclobutene ring-opening reactions of bridged syn-tricyclo[4.2.0.0(2,5)]octa-3,7-dienes. Bethke S; Hrovat DA; Borden WT; Gleiter R J Org Chem; 2004 May; 69(10):3294-301. PubMed ID: 15132534 [TBL] [Abstract][Full Text] [Related]
11. A Silyl Substituent Can Dictate a Concerted Electrocyclic Pathway: Inward Torquoselectivity in the Ring Opening of 3-Silyl-1-cyclobutene. Murakami M; Miyamoto Y; Ito Y Angew Chem Int Ed Engl; 2001 Jan; 40(1):189-190. PubMed ID: 11169709 [No Abstract] [Full Text] [Related]
12. The effect of solvation in torquoselectivity: ring opening of monosubstituted cyclobutenes. Saadat K; Villar López R; Shiri A; Nieto Faza O; Silva López C Org Biomol Chem; 2020 Aug; 18(32):6287-6296. PubMed ID: 32734984 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic control of the electrocyclic ring opening of cyclobutenes: C=X substituents at C-3 mask the kinetic torquoselectivity. Um JM; Xu H; Houk KN; Tang W J Am Chem Soc; 2009 May; 131(19):6664-5. PubMed ID: 19402639 [TBL] [Abstract][Full Text] [Related]
14. Theoretical and experimental studies on the thermal ring-opening reaction of cyclobutene having a stannyl substituent at the 3-position. Murakami M; Hasegawa M; Igawa H J Org Chem; 2004 Jan; 69(2):587-90. PubMed ID: 14725482 [TBL] [Abstract][Full Text] [Related]
15. New insights about electronic mechanism of electrocyclic reactions: theoretical study about stereoselectivity in cyclobutenes. Morales-Bayuelo A; Sánchez-Márquez J Heliyon; 2021 Apr; 7(4):e06675. PubMed ID: 33898817 [TBL] [Abstract][Full Text] [Related]
16. New insights into the torquoselectivity of the Staudinger reaction. Liang Y; Jiao L; Zhang S; Yu ZX; Xu J J Am Chem Soc; 2009 Feb; 131(4):1542-9. PubMed ID: 19132931 [TBL] [Abstract][Full Text] [Related]
17. New insights of QTAIM and stress tensor to finding non-competitive/competitive torquoselectivity of cyclobutene. Momen R; Azizi A; Morales-Bayuelo A; Pazhoohesh M; Ji X J Chem Phys; 2021 Nov; 155(20):204305. PubMed ID: 34852485 [TBL] [Abstract][Full Text] [Related]
18. Scope of the ring-opening metathesis polymerization (ROMP) reaction of 1-substituted cyclobutenes. Song A; Lee JC; Parker KA; Sampson NS J Am Chem Soc; 2010 Aug; 132(30):10513-20. PubMed ID: 20614908 [TBL] [Abstract][Full Text] [Related]
19. Determining the Factors Accounting for Reaction Selectivity: A Relative Energy Gradient - Interacting Quantum Atoms and Natural Bonding Orbitals Study. Cador A; Morell C; Tognetti V; Joubert L; Popelier PLA Chemphyschem; 2024 Aug; 25(16):e202400163. PubMed ID: 38747261 [TBL] [Abstract][Full Text] [Related]
20. A theoretical study of cyclohexyne addition to carbonyl-Cα bonds: allowed and forbidden electrocyclic and nonpericyclic ring-openings of strained cyclobutenes. Sader CA; Houk KN J Org Chem; 2012 Jun; 77(11):4939-48. PubMed ID: 22537557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]