These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 32602715)

  • 1. General Protocol for the Accurate Prediction of Molecular
    Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA
    J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost.
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):222-30. PubMed ID: 24573615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Prediction of NMR Chemical Shifts: Integrating DFT Calculations with Three-Dimensional Graph Neural Networks.
    Han C; Zhang D; Xia S; Zhang Y
    J Chem Theory Comput; 2024 Jun; 20(12):5250-5258. PubMed ID: 38842505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of CCSD(T)-Quality NMR Chemical Shifts via Δ-Machine Learning from DFT.
    Kleine Büning JB; Grimme S
    J Chem Theory Comput; 2023 Jun; 19(12):3601-3615. PubMed ID: 37262324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic investigation of DFT-GIAO
    Xin D; Sader CA; Fischer U; Wagner K; Jones PJ; Xing M; Fandrick KR; Gonnella NC
    Org Biomol Chem; 2017 Jan; 15(4):928-936. PubMed ID: 28050610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning.
    Unzueta PA; Greenwell CS; Beran GJO
    J Chem Theory Comput; 2021 Feb; 17(2):826-840. PubMed ID: 33428408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time prediction of
    Guan Y; Shree Sowndarya SV; Gallegos LC; St John PC; Paton RS
    Chem Sci; 2021 Sep; 12(36):12012-12026. PubMed ID: 34667567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of
    Gerrard W; Yiu C; Butts CP
    Magn Reson Chem; 2022 Nov; 60(11):1087-1092. PubMed ID: 34407565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DELTA50: A Highly Accurate Database of Experimental
    Cohen RD; Wood JS; Lam YH; Buevich AV; Sherer EC; Reibarkh M; Williamson RT; Martin GE
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Elucidating Structure-Spectra Relationships in Rhamnogalacturonan II: Computational Protocols for Accurate
    Bharadwaj VS; Westawker LP; Crowley MF
    Front Mol Biosci; 2021; 8():756219. PubMed ID: 35141275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the accuracy factors and computational cost of the GIAO-DFT calculation of
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2017 Nov; 55(11):1015-1021. PubMed ID: 28600816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.
    Pasha MA; Siddekha A; Mishra S; Azzam SH; Umapathy S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():221-33. PubMed ID: 25440584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations.
    Sklenak S; Dedecek J; Li C; Wichterlová B; Gábová V; Sierka M; Sauer J
    Phys Chem Chem Phys; 2009 Feb; 11(8):1237-47. PubMed ID: 19209368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical and DFT GIAO quantum-mechanical methods of (13)C chemical shifts prediction: competitors or collaborators?
    Elyashberg M; Blinov K; Smurnyy Y; Churanova T; Williams A
    Magn Reson Chem; 2010 Mar; 48(3):219-29. PubMed ID: 20108257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H and 13C NMR chemical shift assignments of spiro-cycloalkylidenehomo- and methanofullerenes by the DFT-GIAO method.
    Khalilov LM; Tulyabaev AR; Yanybin VM; Tuktarov AR
    Magn Reson Chem; 2011 Jun; 49(6):378-84. PubMed ID: 21452349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.
    Karabacak M; Kose E; Sas EB; Kurt M; Asiri AM; Atac A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():306-20. PubMed ID: 25448934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Efficiency of the Density Functional Theory (DFT)-Based Computational Protocol for
    Rusakov YY; Semenov VA; Rusakova IL
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of seven-membered lactones by computational NMR methods: proton NMR chemical shift data are more discriminating than carbon.
    Marell DJ; Emond SJ; Kulshrestha A; Hoye TR
    J Org Chem; 2014 Jan; 79(2):752-8. PubMed ID: 24354614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIM-ML: A Novel Quantum Chemical Fragment-Based Random Forest Model for Accurate Prediction of NMR Chemical Shifts of Nucleic Acids.
    Chandy SK; Raghavachari K
    J Chem Theory Comput; 2023 Oct; 19(19):6632-6642. PubMed ID: 37703522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.