These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32602718)

  • 81. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin.
    Quetglas S; Leveque C; Miquelis R; Sato K; Seagar M
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9695-700. PubMed ID: 10944231
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
    Jas GS; Kuczera K
    Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fabrication and characterization of a thermostable quinoprotein aldose sugar dehydrogenase immobilized electrode.
    Yamada Y; Hayashi T; Sakuraba H; Yabutani T; Takayanagi T
    Anal Sci; 2013; 29(1):79-83. PubMed ID: 23303089
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Six putative IQ motifs of the recombinant chicken intestinal brush border myosin I are involved in calmodulin binding.
    Khoroshev MI; Munson SJ; Bikle DD
    Arch Biochem Biophys; 1999 Jan; 361(1):94-100. PubMed ID: 9882432
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Switchable photochemical/electrochemical wiring of glucose oxidase with electrodes.
    Yehezkeli O; Moshe M; Tel-Vered R; Feng Y; Li Y; Tian H; Willner I
    Analyst; 2010 Mar; 135(3):474-6. PubMed ID: 20174697
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Calcium-induced calmodulin conformational change. Electrochemical evaluation.
    Fernandes IP; Oliveira-Brett AM
    Bioelectrochemistry; 2017 Feb; 113():69-78. PubMed ID: 27768936
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Calmodulin-binding protein detection using a non-radiolabeled calmodulin fusion protein.
    Murray G; Marshall MJ; Trumble W; Magnuson BA
    Biotechniques; 2001 May; 30(5):1036-42. PubMed ID: 11355339
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Rate and extent of protein localization is controlled by peptide-binding domain association kinetics and morphology.
    Mills E; Truong K
    Protein Sci; 2009 Jun; 18(6):1252-60. PubMed ID: 19472343
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Production of recombinant plant calmodulin and its use to detect calmodulin-binding proteins.
    Liao B; Zielinski RE
    Methods Cell Biol; 1995; 49():487-500. PubMed ID: 8531779
    [No Abstract]   [Full Text] [Related]  

  • 90. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide.
    Green DF; Dennis AT; Fam PS; Tidor B; Jasanoff A
    Biochemistry; 2006 Oct; 45(41):12547-59. PubMed ID: 17029410
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Flexible micro(bio)sensors for quantitative analysis of bioanalytes in a nanovolume of human lachrymal liquid.
    Andoralov V; Shleev S; Arnebrant T; Ruzgas T
    Anal Bioanal Chem; 2013 Apr; 405(11):3871-9. PubMed ID: 23392407
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Catalyst-based biomolecular logic gates.
    Winston DS; Boehr DD
    Catalysts; 2022 Jul; 12(7):. PubMed ID: 37377541
    [TBL] [Abstract][Full Text] [Related]  

  • 94. An electrochemical method for detecting the biomarker 4-HPA by allosteric activation of Acinetobacterbaumannii reductase C1 subunit.
    Teanphonkrang S; Suginta W; Sucharitakul J; Fukamizo T; Chaiyen P; Schulte A
    J Biol Chem; 2021; 296():100467. PubMed ID: 33639166
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sensing the future of bio-informational engineering.
    Dixon TA; Williams TC; Pretorius IS
    Nat Commun; 2021 Jan; 12(1):388. PubMed ID: 33452260
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals.
    Bollella P; Edwardraja S; Guo Z; Kirill Alexandrov ; Katz E
    J Phys Chem Lett; 2020 Jul; 11(14):5549-5554. PubMed ID: 32602718
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Control of allosteric electrochemical protein switch using magnetic signals.
    Bollella P; Edwardraja S; Guo Z; Alexandrov K; Katz E
    Chem Commun (Camb); 2020 Aug; 56(64):9206-9209. PubMed ID: 32662462
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Generalizable Protein Biosensors Based on Synthetic Switch Modules.
    Guo Z; Johnston WA; Whitfield J; Walden P; Cui Z; Wijker E; Edwardraja S; Retamal Lantadilla I; Ely F; Vickers C; Ungerer JPJ; Alexandrov K
    J Am Chem Soc; 2019 May; 141(20):8128-8135. PubMed ID: 31074995
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ca
    Koushanpour A; Gamella M; Guo Z; Honarvarfard E; Poghossian A; Schöning MJ; Alexandrov K; Katz E
    J Phys Chem B; 2017 Dec; 121(51):11465-11471. PubMed ID: 29185751
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Synthetic protein switches: design principles and applications.
    Stein V; Alexandrov K
    Trends Biotechnol; 2015 Feb; 33(2):101-10. PubMed ID: 25535088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.