These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32603116)

  • 1. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes.
    Brožek R; Kabelka I; Vácha R
    J Phys Chem B; 2020 Jul; 124(28):5940-5947. PubMed ID: 32603116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides.
    Kabelka I; Vácha R
    Acc Chem Res; 2021 May; 54(9):2196-2204. PubMed ID: 33844916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of helical kink in antimicrobial peptides on membrane pore formation.
    Tuerkova A; Kabelka I; Králová T; Sukeník L; Pokorná Š; Hof M; Vácha R
    Elife; 2020 Mar; 9():. PubMed ID: 32167466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins.
    Bartoš L; Kabelka I; Vácha R
    Biophys J; 2021 Jun; 120(11):2296-2305. PubMed ID: 33864790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into buforin II membrane translocation from molecular dynamics simulations.
    Elmore DE
    Peptides; 2012 Dec; 38(2):357-62. PubMed ID: 23022591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lipid composition on buforin II structure and membrane entry.
    Fleming E; Maharaj NP; Chen JL; Nelson RB; Elmore DE
    Proteins; 2008 Nov; 73(2):480-91. PubMed ID: 18452210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor.
    Kobayashi S; Takeshima K; Park CB; Kim SC; Matsuzaki K
    Biochemistry; 2000 Jul; 39(29):8648-54. PubMed ID: 10913273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II.
    Park CB; Yi KS; Matsuzaki K; Kim MS; Kim SC
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8245-50. PubMed ID: 10890923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane translocation mechanism of the antimicrobial peptide buforin 2.
    Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K
    Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of proline position on the antimicrobial mechanism of buforin II.
    Xie Y; Fleming E; Chen JL; Elmore DE
    Peptides; 2011 Apr; 32(4):677-82. PubMed ID: 21277926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb.
    Jang SA; Kim H; Lee JY; Shin JR; Kim DJ; Cho JH; Kim SC
    Peptides; 2012 Apr; 34(2):283-9. PubMed ID: 22306477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting Collective Variables and Free-Energy Methods for Peptide Translocation across Membranes.
    Kabelka I; Brožek R; Vácha R
    J Chem Inf Model; 2021 Feb; 61(2):819-830. PubMed ID: 33566605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action.
    Yang ST; Lee JY; Kim HJ; Eu YJ; Shin SY; Hahm KS; Kim JI
    FEBS J; 2006 Sep; 273(17):4040-54. PubMed ID: 16889633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin.
    Suh JY; Lee YT; Park CB; Lee KH; Kim SC; Choi BS
    Eur J Biochem; 1999 Dec; 266(2):665-74. PubMed ID: 10561611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect Formation and Peptide Permeation across Phospholipid Membranes.
    Elber R
    J Phys Chem B; 2023 Sep; 127(37):7810-7818. PubMed ID: 37678235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E. coli.
    Kol MA; de Kroon AI; Rijkers DT; Killian JA; de Kruijff B
    Biochemistry; 2001 Sep; 40(35):10500-6. PubMed ID: 11523991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide.
    Thomas R; Vostrikov VV; Greathouse DV; Koeppe RE
    Biochemistry; 2009 Dec; 48(50):11883-91. PubMed ID: 19891499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition.
    Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B
    Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of cationic antimicrobial peptides with model membranes.
    Zhang L; Rozek A; Hancock RE
    J Biol Chem; 2001 Sep; 276(38):35714-22. PubMed ID: 11473117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes.
    Takeshima K; Chikushi A; Lee KK; Yonehara S; Matsuzaki K
    J Biol Chem; 2003 Jan; 278(2):1310-5. PubMed ID: 12417587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.