These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32603179)

  • 1. Topology Restricts Quasidegeneracy in Sheared Square Colloidal Ice.
    Oğuz EC; Ortiz-Ambriz A; Shem-Tov H; Babià-Soler E; Tierno P; Shokef Y
    Phys Rev Lett; 2020 Jun; 124(23):238003. PubMed ID: 32603179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice.
    Perrin Y; Canals B; Rougemaille N
    Nature; 2016 Dec; 540(7633):410-413. PubMed ID: 27894124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degeneracy and criticality from emergent frustration in artificial spin ice.
    Chern GW; Morrison MJ; Nisoli C
    Phys Rev Lett; 2013 Oct; 111(17):177201. PubMed ID: 24206515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices.
    Ortiz-Ambriz A; Tierno P
    Nat Commun; 2016 Feb; 7():10575. PubMed ID: 26830629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric frustration in buckled colloidal monolayers.
    Han Y; Shokef Y; Alsayed AM; Yunker P; Lubensky TC; Yodh AG
    Nature; 2008 Dec; 456(7224):898-903. PubMed ID: 19092926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures.
    Latimer ML; Berdiyorov GR; Xiao ZL; Peeters FM; Kwok WK
    Phys Rev Lett; 2013 Aug; 111(6):067001. PubMed ID: 23971602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem.
    Wang YL; Ma X; Xu J; Xiao ZL; Snezhko A; Divan R; Ocola LE; Pearson JE; Janko B; Kwok WK
    Nat Nanotechnol; 2018 Jul; 13(7):560-565. PubMed ID: 29892018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Aharanov-Bohm effect, magnetic monopoles and reversal in spin-ice lattices.
    Pollard SD; Zhu Y
    Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S55-64. PubMed ID: 23549453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of magnetic ordering induced
    Cote T; Petford-Long AK; Phatak C
    Nanoscale; 2023 Jul; 15(27):11506-11516. PubMed ID: 37357732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological frustration of artificial spin ice.
    Drisko J; Marsh T; Cumings J
    Nat Commun; 2017 Jan; 8():14009. PubMed ID: 28084314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial 'spin ice' in a geometrically frustrated lattice of nanoscale ferromagnetic islands.
    Wang RF; Nisoli C; Freitas RS; Li J; McConville W; Cooley BJ; Lund MS; Samarth N; Leighton C; Crespi VH; Schiffer P
    Nature; 2006 Jan; 439(7074):303-6. PubMed ID: 16421565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice rule fragility via topological charge transfer in artificial colloidal ice.
    Libál A; Lee DY; Ortiz-Ambriz A; Reichhardt C; Reichhardt CJO; Tierno P; Nisoli C
    Nat Commun; 2018 Oct; 9(1):4146. PubMed ID: 30297820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum ice: a quantum Monte Carlo study.
    Shannon N; Sikora O; Pollmann F; Penc K; Fulde P
    Phys Rev Lett; 2012 Feb; 108(6):067204. PubMed ID: 22401117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Realization of a Quantum Pentagonal Lattice.
    Yamaguchi H; Okubo T; Kittaka S; Sakakibara T; Araki K; Iwase K; Amaya N; Ono T; Hosokoshi Y
    Sci Rep; 2015 Oct; 5():15327. PubMed ID: 26468930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ising antiferromagnet on the Archimedean lattices.
    Yu U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062121. PubMed ID: 26172675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin ice state in frustrated magnetic pyrochlore materials.
    Bramwell ST; Gingras MJ
    Science; 2001 Nov; 294(5546):1495-501. PubMed ID: 11711667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-energy states, ground states, and variable frustrations of the finite-size dipolar Cairo lattices.
    Makarova K; Strongin V; Titovets I; Syrov A; Zinchenko I; Samoylov V; Hofhuis K; Saccone M; Makarov A; Farhan A; Nefedev K
    Phys Rev E; 2021 Apr; 103(4-1):042129. PubMed ID: 34005950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orbital ice: an exact Coulomb phase on the diamond lattice.
    Chern GW; Wu C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061127. PubMed ID: 22304060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological Boundary Constraints in Artificial Colloidal Ice.
    Rodríguez-Gallo C; Ortiz-Ambriz A; Tierno P
    Phys Rev Lett; 2021 May; 126(18):188001. PubMed ID: 34018772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetization dynamics in artificial spin ice.
    Lendinez S; Jungfleisch MB
    J Phys Condens Matter; 2020 Jan; 32(1):013001. PubMed ID: 31600143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.