BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32603245)

  • 1. Regulative role of calcium signaling on methylglyoxal-improved heat tolerance in maize (
    Li ZG
    Plant Signal Behav; 2020 Sep; 15(9):1788303. PubMed ID: 32603245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling.
    Li ZG; Ye XY; Qiu XM
    Protoplasma; 2019 Jul; 256(4):1165-1169. PubMed ID: 30675652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation boosts seed germination, seedling growth, and thermotolerance improvement in maize (
    Li ZG; Gou HQ; Li RQ
    Plant Signal Behav; 2019; 14(12):1681101. PubMed ID: 31651208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylglyoxal triggers the heat tolerance in maize seedlings by driving AsA-GSH cycle and reactive oxygen species-/methylglyoxal-scavenging system.
    Wang Y; Ye XY; Qiu XM; Li ZG
    Plant Physiol Biochem; 2019 May; 138():91-99. PubMed ID: 30856415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Involvement of Ca2+ and calmodulin in the regulation of H2O2-induced heat tolerance in maize seedlings].
    Li ZG; Du CK; Gong M
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Oct; 31(5):515-9. PubMed ID: 16222094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin enhances thermotolerance of maize seedlings (Zea mays L.) by modulating antioxidant defense, methylglyoxal detoxification, and osmoregulation systems.
    Li ZG; Xu Y; Bai LK; Zhang SY; Wang Y
    Protoplasma; 2019 Mar; 256(2):471-490. PubMed ID: 30244382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between hydrogen sulfide and methylglyoxal initiates thermotolerance in maize seedlings by modulating reactive oxidative species and osmolyte metabolism.
    Ye XY; Qiu XM; Sun YY; Li ZG
    Protoplasma; 2020 Sep; 257(5):1415-1432. PubMed ID: 32474849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of osmoregulation, glyoxalase, and non-glyoxalase systems in signaling molecule glutamic acid-boosted thermotolerance in maize seedlings.
    Qiu XM; Sun YY; Wang JQ; Xiang RH; Li ZG
    Protoplasma; 2022 Nov; 259(6):1507-1520. PubMed ID: 35277781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gasotransmitter ammonia accelerates seed germination, seedling growth, and thermotolerance acquirement in maize.
    Li ZG; Lu XQ; Chen J
    Plant Signal Behav; 2023 Dec; 18(1):2163338. PubMed ID: 36682345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize.
    Zhao Y; Du H; Wang Y; Wang H; Yang S; Li C; Chen N; Yang H; Zhang Y; Zhu Y; Yang L; Hu X
    J Integr Plant Biol; 2021 Mar; 63(3):510-527. PubMed ID: 33331695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Ren Q; Zhang J; Chen L
    Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling molecule glutamic acid initiates the expression of genes related to methylglyoxal scavenging and osmoregulation systems in maize seedlings.
    Qiu XM; Sun YY; Li ZG
    Plant Signal Behav; 2022 Dec; 17(1):1994257. PubMed ID: 34875972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZmHsf05, a new heat shock transcription factor from Zea mays L. improves thermotolerance in Arabidopsis thaliana and rescues thermotolerance defects of the athsfa2 mutant.
    Li GL; Zhang HN; Shao H; Wang GY; Zhang YY; Zhang YJ; Zhao LN; Guo XL; Sheteiwy MS
    Plant Sci; 2019 Jun; 283():375-384. PubMed ID: 31128708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key role of reactive oxygen species-scavenging system in nitric oxide and hydrogen sulfide crosstalk-evoked thermotolerance in maize seedlings.
    Sun YY; Wang JQ; Xiang RH; Li ZG
    Front Plant Sci; 2022; 13():967968. PubMed ID: 36420031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur dioxide improves the thermotolerance of maize seedlings by regulating salicylic acid biosynthesis.
    Li M; Wang M; Chen J; Wu J; Xia Z
    Ecotoxicol Environ Saf; 2023 Apr; 254():114746. PubMed ID: 36905845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings.
    Subbaiah CC; Zhang J; Sachs MM
    Plant Physiol; 1994 May; 105(1):369-76. PubMed ID: 7518090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response.
    Yang Y; Li Z; Zhang J
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892463
    [No Abstract]   [Full Text] [Related]  

  • 18. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).
    Peng R; Bian Z; Zhou L; Cheng W; Hai N; Yang C; Yang T; Wang X; Wang C
    Plant Cell Rep; 2016 Nov; 35(11):2325-2340. PubMed ID: 27516180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Essential Role of H
    Wang JQ; Xiang RH; Li ZG
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings.
    Li ZG
    Plant Signal Behav; 2015; 10(9):e1051278. PubMed ID: 26337076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.