These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 32603548)
1. Intact vagal gut-brain signalling prevents hyperphagia and excessive weight gain in response to high-fat high-sugar diet. McDougle M; Quinn D; Diepenbroek C; Singh A; de la Serre C; de Lartigue G Acta Physiol (Oxf); 2021 Mar; 231(3):e13530. PubMed ID: 32603548 [TBL] [Abstract][Full Text] [Related]
2. Intermittent access to a sucrose solution impairs metabolism in obesity-prone but not obesity-resistant mice. Soto M; Chaumontet C; Mauduit CD; Fromentin G; Palme R; Tomé D; Even P Physiol Behav; 2016 Feb; 154():175-83. PubMed ID: 26596703 [TBL] [Abstract][Full Text] [Related]
3. A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia. la Fleur SE; van Rozen AJ; Luijendijk MC; Groeneweg F; Adan RA Int J Obes (Lond); 2010 Mar; 34(3):537-46. PubMed ID: 20029382 [TBL] [Abstract][Full Text] [Related]
4. Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Lee SJ; Krieger JP; Vergara M; Quinn D; McDougle M; de Araujo A; Darling R; Zollinger B; Anderson S; Pan A; Simonnet EJ; Pignalosa A; Arnold M; Singh A; Langhans W; Raybould HE; de Lartigue G Cell Rep; 2020 Feb; 30(6):2028-2039.e4. PubMed ID: 32049029 [TBL] [Abstract][Full Text] [Related]
5. Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats. Guerville M; Hamilton MK; Ronveaux CC; Ellero-Simatos S; Raybould HE; Boudry G Eur J Nutr; 2019 Sep; 58(6):2497-2510. PubMed ID: 30069617 [TBL] [Abstract][Full Text] [Related]
6. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Sen T; Cawthon CR; Ihde BT; Hajnal A; DiLorenzo PM; de La Serre CB; Czaja K Physiol Behav; 2017 May; 173():305-317. PubMed ID: 28249783 [TBL] [Abstract][Full Text] [Related]
7. Potato-Resistant Starch Supplementation Improves Microbiota Dysbiosis, Inflammation, and Gut-Brain Signaling in High Fat-Fed Rats. Klingbeil EA; Cawthon C; Kirkland R; de La Serre CB Nutrients; 2019 Nov; 11(11):. PubMed ID: 31717368 [TBL] [Abstract][Full Text] [Related]
8. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway. Kim JS; Kirkland RA; Lee SH; Cawthon CR; Rzepka KW; Minaya DM; de Lartigue G; Czaja K; de La Serre CB Physiol Behav; 2020 Oct; 225():113082. PubMed ID: 32682966 [TBL] [Abstract][Full Text] [Related]
9. Validation and characterization of a novel method for selective vagal deafferentation of the gut. Diepenbroek C; Quinn D; Stephens R; Zollinger B; Anderson S; Pan A; de Lartigue G Am J Physiol Gastrointest Liver Physiol; 2017 Oct; 313(4):G342-G352. PubMed ID: 28705805 [TBL] [Abstract][Full Text] [Related]
10. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. la Fleur SE; Luijendijk MC; van der Zwaal EM; Brans MA; Adan RA Int J Obes (Lond); 2014 May; 38(5):643-9. PubMed ID: 23979221 [TBL] [Abstract][Full Text] [Related]
11. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents. Troy AE; Simmonds SS; Stocker SD; Browning KN J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775 [TBL] [Abstract][Full Text] [Related]
12. Role of the vagus nerve in the development and treatment of diet-induced obesity. de Lartigue G J Physiol; 2016 Oct; 594(20):5791-5815. PubMed ID: 26959077 [TBL] [Abstract][Full Text] [Related]
13. High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake. Byerly MS; Fox EA Neurosci Lett; 2006 Jun; 400(3):240-5. PubMed ID: 16530962 [TBL] [Abstract][Full Text] [Related]
14. Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation. Vaughn AC; Cooper EM; DiLorenzo PM; O'Loughlin LJ; Konkel ME; Peters JH; Hajnal A; Sen T; Lee SH; de La Serre CB; Czaja K Acta Neurobiol Exp (Wars); 2017; 77(1):18-30. PubMed ID: 28379213 [TBL] [Abstract][Full Text] [Related]
15. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. de Lartigue G; Ronveaux CC; Raybould HE Mol Metab; 2014 Sep; 3(6):595-607. PubMed ID: 25161883 [TBL] [Abstract][Full Text] [Related]
16. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice. Kentish SJ; Frisby CL; Kritas S; Li H; Hatzinikolas G; O'Donnell TA; Wittert GA; Page AJ PLoS One; 2015; 10(8):e0135892. PubMed ID: 26285043 [TBL] [Abstract][Full Text] [Related]
17. Chronic experience with unpredictable food availability promotes food reward, overeating, and weight gain in a novel animal model of food insecurity. Myers KP; Majewski M; Schaefer D; Tierney A Appetite; 2022 Sep; 176():106120. PubMed ID: 35671918 [TBL] [Abstract][Full Text] [Related]
18. Hyperphagia in rats produced by a mixture of fat and sugar. Lucas F; Sclafani A Physiol Behav; 1990 Jan; 47(1):51-5. PubMed ID: 2326345 [TBL] [Abstract][Full Text] [Related]
19. Time-dependent changes in feeding behavior and energy balance associated with weight gain in mice fed obesogenic diets. Fathi PA; Bales MB; Ayala JE Obesity (Silver Spring); 2024 Jul; 32(7):1373-1388. PubMed ID: 38932722 [TBL] [Abstract][Full Text] [Related]
20. Manipulation of feeding patterns in high fat diet fed rats improves microbiota composition dynamics, inflammation and gut-brain signaling. Klingbeil EA; Schade R; Lee SH; Kirkland R; de La Serre CB Physiol Behav; 2024 Oct; 285():114643. PubMed ID: 39059597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]