BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 32603548)

  • 1. Intact vagal gut-brain signalling prevents hyperphagia and excessive weight gain in response to high-fat high-sugar diet.
    McDougle M; Quinn D; Diepenbroek C; Singh A; de la Serre C; de Lartigue G
    Acta Physiol (Oxf); 2021 Mar; 231(3):e13530. PubMed ID: 32603548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent access to a sucrose solution impairs metabolism in obesity-prone but not obesity-resistant mice.
    Soto M; Chaumontet C; Mauduit CD; Fromentin G; Palme R; Tomé D; Even P
    Physiol Behav; 2016 Feb; 154():175-83. PubMed ID: 26596703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia.
    la Fleur SE; van Rozen AJ; Luijendijk MC; Groeneweg F; Adan RA
    Int J Obes (Lond); 2010 Mar; 34(3):537-46. PubMed ID: 20029382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain.
    Lee SJ; Krieger JP; Vergara M; Quinn D; McDougle M; de Araujo A; Darling R; Zollinger B; Anderson S; Pan A; Simonnet EJ; Pignalosa A; Arnold M; Singh A; Langhans W; Raybould HE; de Lartigue G
    Cell Rep; 2020 Feb; 30(6):2028-2039.e4. PubMed ID: 32049029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats.
    Guerville M; Hamilton MK; Ronveaux CC; Ellero-Simatos S; Raybould HE; Boudry G
    Eur J Nutr; 2019 Sep; 58(6):2497-2510. PubMed ID: 30069617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity.
    Sen T; Cawthon CR; Ihde BT; Hajnal A; DiLorenzo PM; de La Serre CB; Czaja K
    Physiol Behav; 2017 May; 173():305-317. PubMed ID: 28249783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potato-Resistant Starch Supplementation Improves Microbiota Dysbiosis, Inflammation, and Gut-Brain Signaling in High Fat-Fed Rats.
    Klingbeil EA; Cawthon C; Kirkland R; de La Serre CB
    Nutrients; 2019 Nov; 11(11):. PubMed ID: 31717368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway.
    Kim JS; Kirkland RA; Lee SH; Cawthon CR; Rzepka KW; Minaya DM; de Lartigue G; Czaja K; de La Serre CB
    Physiol Behav; 2020 Oct; 225():113082. PubMed ID: 32682966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation and characterization of a novel method for selective vagal deafferentation of the gut.
    Diepenbroek C; Quinn D; Stephens R; Zollinger B; Anderson S; Pan A; de Lartigue G
    Am J Physiol Gastrointest Liver Physiol; 2017 Oct; 313(4):G342-G352. PubMed ID: 28705805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns.
    la Fleur SE; Luijendijk MC; van der Zwaal EM; Brans MA; Adan RA
    Int J Obes (Lond); 2014 May; 38(5):643-9. PubMed ID: 23979221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents.
    Troy AE; Simmonds SS; Stocker SD; Browning KN
    J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the vagus nerve in the development and treatment of diet-induced obesity.
    de Lartigue G
    J Physiol; 2016 Oct; 594(20):5791-5815. PubMed ID: 26959077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake.
    Byerly MS; Fox EA
    Neurosci Lett; 2006 Jun; 400(3):240-5. PubMed ID: 16530962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation.
    Vaughn AC; Cooper EM; DiLorenzo PM; O'Loughlin LJ; Konkel ME; Peters JH; Hajnal A; Sen T; Lee SH; de La Serre CB; Czaja K
    Acta Neurobiol Exp (Wars); 2017; 77(1):18-30. PubMed ID: 28379213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity.
    de Lartigue G; Ronveaux CC; Raybould HE
    Mol Metab; 2014 Sep; 3(6):595-607. PubMed ID: 25161883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.
    Kentish SJ; Frisby CL; Kritas S; Li H; Hatzinikolas G; O'Donnell TA; Wittert GA; Page AJ
    PLoS One; 2015; 10(8):e0135892. PubMed ID: 26285043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic experience with unpredictable food availability promotes food reward, overeating, and weight gain in a novel animal model of food insecurity.
    Myers KP; Majewski M; Schaefer D; Tierney A
    Appetite; 2022 Sep; 176():106120. PubMed ID: 35671918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent changes in feeding behavior and energy balance associated with weight gain in mice fed obesogenic diets.
    Fathi PA; Bales MB; Ayala JE
    Obesity (Silver Spring); 2024 Jul; 32(7):1373-1388. PubMed ID: 38932722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperphagia in rats produced by a mixture of fat and sugar.
    Lucas F; Sclafani A
    Physiol Behav; 1990 Jan; 47(1):51-5. PubMed ID: 2326345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High fat diet and body weight have different effects on cannabinoid CB(1) receptor expression in rat nodose ganglia.
    Cluny NL; Baraboi ED; Mackie K; Burdyga G; Richard D; Dockray GJ; Sharkey KA
    Auton Neurosci; 2013 Dec; 179(1-2):122-30. PubMed ID: 24145047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.