BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 32603690)

  • 1. Regulation of inflammation in diabetes: From genetics to epigenomics evidence.
    Diedisheim M; Carcarino E; Vandiedonck C; Roussel R; Gautier JF; Venteclef N
    Mol Metab; 2020 Nov; 41():101041. PubMed ID: 32603690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancer Dysfunction in 3D Genome and Disease.
    Xia JH; Wei GH
    Cells; 2019 Oct; 8(10):. PubMed ID: 31635067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive integrated post-GWAS analysis of Type 1 diabetes reveals enhancer-based immune dysregulation.
    Kim SS; Hudgins AD; Yang J; Zhu Y; Tu Z; Rosenfeld MG; DiLorenzo TP; Suh Y
    PLoS One; 2021; 16(9):e0257265. PubMed ID: 34529725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenomic functional characterization of genetic susceptibility variants in systemic vasculitis.
    Sawalha AH; Dozmorov MG
    J Autoimmun; 2016 Feb; 67():76-81. PubMed ID: 26492816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.
    Parker SC; Stitzel ML; Taylor DL; Orozco JM; Erdos MR; Akiyama JA; van Bueren KL; Chines PS; Narisu N; ; Black BL; Visel A; Pennacchio LA; Collins FS; ;
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17921-6. PubMed ID: 24127591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenomic model of cardiac enhancers with application to genome wide association studies.
    Sahu AD; Aniba R; Chang YP; Hannenhalli S
    Pac Symp Biocomput; 2013; ():92-102. PubMed ID: 23424115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease.
    Gjoneska E; Pfenning AR; Mathys H; Quon G; Kundaje A; Tsai LH; Kellis M
    Nature; 2015 Feb; 518(7539):365-9. PubMed ID: 25693568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk variants disrupting enhancers of T
    Gao P; Uzun Y; He B; Salamati SE; Coffey JKM; Tsalikian E; Tan K
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7581-7590. PubMed ID: 30910956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complexity of epigenetic diseases.
    Brazel AJ; Vernimmen D
    J Pathol; 2016 Jan; 238(2):333-44. PubMed ID: 26419725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional enhancers: from prediction to functional assessment on a genome-wide scale.
    Tobias IC; Abatti LE; Moorthy SD; Mullany S; Taylor T; Khader N; Filice MA; Mitchell JA
    Genome; 2021 Apr; 64(4):426-448. PubMed ID: 32961076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression.
    Kycia I; Wolford BN; Huyghe JR; Fuchsberger C; Vadlamudi S; Kursawe R; Welch RP; Albanus RD; Uyar A; Khetan S; Lawlor N; Bolisetty M; Mathur A; Kuusisto J; Laakso M; Ucar D; Mohlke KL; Boehnke M; Collins FS; Parker SCJ; Stitzel ML
    Am J Hum Genet; 2018 Apr; 102(4):620-635. PubMed ID: 29625024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of atrial fibrillation associated genes and functional non-coding variants.
    van Ouwerkerk AF; Bosada FM; van Duijvenboden K; Hill MC; Montefiori LE; Scholman KT; Liu J; de Vries AAF; Boukens BJ; Ellinor PT; Goumans MJTH; Efimov IR; Nobrega MA; Barnett P; Martin JF; Christoffels VM
    Nat Commun; 2019 Oct; 10(1):4755. PubMed ID: 31628324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond association: successes and challenges in linking non-coding genetic variation to functional consequences that modulate Alzheimer's disease risk.
    Novikova G; Andrews SJ; Renton AE; Marcora E
    Mol Neurodegener; 2021 Apr; 16(1):27. PubMed ID: 33882988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancer target prediction: state-of-the-art approaches and future prospects.
    Umarov R; Hon CC
    Biochem Soc Trans; 2023 Oct; 51(5):1975-1988. PubMed ID: 37830459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic effects of sequence-conserved enhancer-like elements on human complex traits.
    Zhu X; Ma S; Wong WH
    Genome Biol; 2024 Jan; 25(1):1. PubMed ID: 38167462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoarthritis year in review 2019: genetics, genomics and epigenetics.
    Reynard LN; Barter MJ
    Osteoarthritis Cartilage; 2020 Mar; 28(3):275-284. PubMed ID: 31874234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional enhancers: from properties to genome-wide predictions.
    Shlyueva D; Stampfel G; Stark A
    Nat Rev Genet; 2014 Apr; 15(4):272-86. PubMed ID: 24614317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenomic analysis reveals a dynamic and context-specific macrophage enhancer landscape associated with innate immune activation and tolerance.
    Zhang P; Amarasinghe HE; Whalley JP; Tay C; Fang H; Migliorini G; Brown AC; Allcock A; Scozzafava G; Rath P; Davies B; Knight JC
    Genome Biol; 2022 Jun; 23(1):136. PubMed ID: 35751107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune disease-associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention.
    Tough DF; Prinjha RK
    Epigenomics; 2017 Apr; 9(4):573-584. PubMed ID: 27925476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes.
    Li MJ; Li M; Liu Z; Yan B; Pan Z; Huang D; Liang Q; Ying D; Xu F; Yao H; Wang P; Kocher JA; Xia Z; Sham PC; Liu JS; Wang J
    Genome Biol; 2017 Mar; 18(1):52. PubMed ID: 28302177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.