These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32604519)

  • 21. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance.
    Zhou Y; Lee J; Lee CW; Wu M; Yoon S
    ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries.
    Xin X; Zhou X; Wu J; Yao X; Liu Z
    ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.
    Madian M; Ummethala R; Naga AOAE; Ismail N; Rümmeli MH; Eychmüller A; Giebeler L
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Te-rP-C Anodes Prepared Using a Scalable Milling Process for High-Performance Lithium-Ion Batteries.
    Choi WS; Kim M; Kim IT
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-Pot Decoration of Graphene with SnO₂ Nanocrystals by an Elevated Hydrothermal Process and Their Application as Anode Materials for Lithium Ion Batteries.
    Kong Z; Liu D; Liu X; Fu A; Wang Y; Guo P; Li H
    J Nanosci Nanotechnol; 2019 Feb; 19(2):850-858. PubMed ID: 30360162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gallium-Telluride-Based Composite as Promising Lithium Storage Material.
    Hoang Huy VP; Kim IT; Hur J
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper Nanoparticle-Incorporated Carbon Fibers as Free-Standing Anodes for Lithium-Ion Batteries.
    Han P; Yuan T; Yao L; Han Z; Yang J; Zheng S
    Nanoscale Res Lett; 2016 Dec; 11(1):172. PubMed ID: 27033848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GeO
    Xie W; Liu C; Hu C; Ma Y; Li X; Wang Q; An Z; Liu S; Sun H; Sun X
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon-Coated SiO
    Buga MR; Spinu-Zaulet AA; Ungureanu CG; Mitran RA; Vasile E; Florea M; Neatu F
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rationally Designed ZnTe@C Nanowires with Superior Zinc Storage Performance for Aqueous Zn Batteries.
    Li J; Zhang L; Xin W; Yang M; Peng H; Geng Y; Yang L; Yan Z; Zhu Z
    Small; 2023 Dec; 19(52):e2304916. PubMed ID: 37452436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superb Li-Ion Storage of Sn-Based Anode Assisted by Conductive Hybrid Buffering Matrix.
    Shin J; Park SH; Hur J
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile Fabrication of N-Doped TiO₂ Nanoparticles/Carbon Composite with Excellent Electrochemical Properties for Lithium Ion Batteries.
    Cai J; Chen L; Chen X
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2452-2459. PubMed ID: 31492261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li
    Yu Y; Liu S; Wang W; Shang Q; Han J; Liu C; Tian Z; Chen J
    Sci Total Environ; 2021 Nov; 794():148688. PubMed ID: 34218152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unusual Improvement of Pseudocapacitance of Nanocomposite Electrodes: Three-Dimensional Amorphous Carbon Frameworks Triggered by TiO
    Lu H; Yang C; Bao H; Wang L; Li C; Wang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48039-48053. PubMed ID: 31791127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of a Si/SiO
    Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M
    Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scalable One-Pot Synthesis of Hierarchical Bi@C Bulk with Superior Lithium-Ion Storage Performances.
    Xu X; Wang Z; Zhang D; Zuo S; Liu J; Zhu M
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51478-51487. PubMed ID: 33161718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrically exploded silicon/carbon nanocomposite as anode material for lithium-ion batteries.
    Farooq U; Choi JH; Kim D; Pervez SA; Yaqub A; Hwang MJ; Lee YJ; Lee WJ; Choi HY; Lee SH; You JH; Ha CW; Doh CH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9340-5. PubMed ID: 25971062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Study of Mechanically Milled MoS₂ and MoSe₂ in Graphite Matrix as Anode Materials for High-Performance Lithium-Ion Batteries.
    Hai NQ; Kim H; Yoo IS; Kim JH; Hur J
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6469-6474. PubMed ID: 29677816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.