These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32604556)

  • 1. Controlling the Voltage Window for Improved Cycling Performance of SnO₂ as Anode Material for Lithium-Ion Batteries.
    Heo J; Haridas AK; Li X; Saroha R; Lee Y; Lim DH; Cho KK; Ahn JH
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7051-7056. PubMed ID: 32604556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.
    Shin JH; Song JY
    Nano Converg; 2016; 3(1):9. PubMed ID: 28191419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-Coated Ordered Mesoporous SnO₂ Composite Based Anode Material for High Performance Lithium-Ion Batteries.
    Heo J; Liu Y; Haridas AK; Jeon J; Zhao X; Cho KK; Ahn HJ; Lee Y; Ahn JH
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6415-6421. PubMed ID: 29677806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast, Highly Reversible, and Cycle-Stable Lithium Storage Boosted by Pseudocapacitance in Sn-Based Alloying Anodes.
    Jiang Y; Li Y; Zhou P; Lan Z; Lu Y; Wu C; Yan M
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28229488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries.
    Meduri P; Pendyala C; Kumar V; Sumanasekera GU; Sunkara MK
    Nano Lett; 2009 Feb; 9(2):612-6. PubMed ID: 19159325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries.
    Mei L; Li C; Qu B; Zhang M; Xu C; Lei D; Chen Y; Xu Z; Chen L; Li Q; Wang T
    Nanoscale; 2012 Sep; 4(18):5731-7. PubMed ID: 22892999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries.
    Choi JS; Lee HJ; Ha JK; Cho KK
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6459-6462. PubMed ID: 29677814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries.
    Kim D; Lee D; Kim J; Moon J
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5408-15. PubMed ID: 22999049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries.
    Fang S; Shen L; Li S; Kim GT; Bresser D; Zhang H; Zhang X; Maier J; Passerini S
    ACS Nano; 2019 Aug; 13(8):9511-9519. PubMed ID: 31335123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries.
    Wang Y; Huang ZX; Shi Y; Wong JI; Ding M; Yang HY
    Sci Rep; 2015 Mar; 5():9164. PubMed ID: 25776280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step Hydrothermal Synthesis of SnO₂@Carbon Composites with Super Lithium Ions Storage Performances.
    Huang MX; Sun YH; Li JQ; Nan JM; Cai YP
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4556-4564. PubMed ID: 30913748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of Sn Anode through Structural Reconstruction of a Cu-Sn Intermetallic Coating Layer.
    Wang G; Aubin M; Mehta A; Tian H; Chang J; Kushima A; Sohn Y; Yang Y
    Adv Mater; 2020 Oct; 32(42):e2003684. PubMed ID: 32844484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemical performance of lithium ion batteries using Sb
    Dong Y; Yang S; Zhang Z; Lee JM; Zapien JA
    Nanoscale; 2018 Feb; 10(7):3159-3165. PubMed ID: 29411002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electrochemical Performances of Bi
    Deng Z; Liu T; Chen T; Jiang J; Yang W; Guo J; Zhao J; Wang H; Gao L
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12469-12477. PubMed ID: 28338325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti
    Shang M; Chen X; Li B; Niu J
    ACS Nano; 2020 Mar; 14(3):3678-3686. PubMed ID: 32078306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Decoration of Graphene with SnO₂ Nanocrystals by an Elevated Hydrothermal Process and Their Application as Anode Materials for Lithium Ion Batteries.
    Kong Z; Liu D; Liu X; Fu A; Wang Y; Guo P; Li H
    J Nanosci Nanotechnol; 2019 Feb; 19(2):850-858. PubMed ID: 30360162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Narrowing Working Voltage Window to Improve Layered GeP Anode Cycling Performance for Lithium-Ion Batteries.
    Shen H; Huang Y; Chang Y; Hao R; Ma Z; Wu K; Du P; Guo B; Lyu Y; Wang P; Yang H; Li Q; Wang H; Liu Z; Nie A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17466-17473. PubMed ID: 32212677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface and Electrochemical Studies on Silicon Diphosphide as Easy-to-Handle Anode Material for Lithium-Based Batteries-the Phosphorus Path.
    Reinhold R; Stoeck U; Grafe HJ; Mikhailova D; Jaumann T; Oswald S; Kaskel S; Giebeler L
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7096-7106. PubMed ID: 29384653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal Synthesis and Electrochemical Behavior of the SnO₂/rGO as Anode Materials for Lithium-Ion Batteries.
    Premasudha M; Reddy BRS; Kim KW; Gari Subba Reddy N; Ahn JH; Cho KK
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7034-7038. PubMed ID: 32604553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.