BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32604574)

  • 1. Four-Channel Monitoring System with Surface Acoustic Wave Sensors for Detection of Chemical Warfare Agents.
    Kim J; Kim E; Kim J; Kim JH; Ha S; Song C; Jang WJ; Yun J
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7151-7157. PubMed ID: 32604574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAW Chemical Array Device Coated with Polymeric Sensing Materials for the Detection of Nerve Agents.
    Kim J; Park H; Kim J; Seo BI; Kim JH
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Performance of Surface Acoustic Wave Sensors by Plasma Treatments for Chemical Warfare Agents Monitoring.
    Kim E; Kim J; Ha S; Song C; Kim JH
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7145-7150. PubMed ID: 32604573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Dimethyl Methylphosphonate (DMMP) Using Polyhedral Oligomeric Silsesquioxane (POSS).
    Lee YJ; Kim JG; Kim JH; Yun J; Jang WJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6565-6569. PubMed ID: 29677835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of MnO
    Lama S; Subedi S; Ramesh S; Shin K; Lee YJ; Kim JH
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional photonic crystal optical gas sensor for trace detection and ultrafast response of chemical warfare agent in atmospheric humidity.
    Wang Y; Wang Z; Gao Y; Yan J; Chen Y; Yang L
    Talanta; 2024 Jun; 277():126383. PubMed ID: 38852345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-Sheet-like Morphology of Nitrogen-Doped Graphene-Oxide-Grafted Manganese Oxide and Polypyrrole Composite for Chemical Warfare Agent Simulant Detection.
    Lama S; Bae BG; Ramesh S; Lee YJ; Kim N; Kim JH
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Sensitive Hybrid Nanostructures for Dimethyl Methyl Phosphonate Detection.
    Lama S; Kim J; Ramesh S; Lee YJ; Kim J; Kim JH
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34073136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of dimethyl methylphosphonate within Langmuir-Blodgett films of trisilanolphenyl polyhedral oligomeric silsesquioxane.
    Ferguson-McPherson MK; Low ER; Esker AR; Morris JR
    J Phys Chem B; 2005 Oct; 109(40):18914-20. PubMed ID: 16853435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.
    Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC
    Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HFIP-Functionalized Co
    Alali KT; Liu J; Chen R; Liu Q; Zhang H; Li J; Hou J; Li R; Wang J
    Chemistry; 2019 Sep; 25(51):11892-11902. PubMed ID: 31309626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor Sorption-Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance.
    Kittle JD; Grasdal EN; Kim SM; Levin NR; Davis PA; Kittle AL; Kittle IJ; Mulcahy JA; Keith BR
    ACS Omega; 2022 Jul; 7(26):22735-22742. PubMed ID: 35811928
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Shaik M; Rao VK; Ramana GV; Halder M; Gutch PK; Pandey P; Jain R
    RSC Adv; 2018 Feb; 8(15):8240-8245. PubMed ID: 35541990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in sensing toxic nerve agents through DMMP model simulant using diverse nanomaterials-based chemical sensors.
    Saya L; Ratandeep ; Arya B; Rastogi K; Verma M; Rani S; Sahu PK; Singh MR; Singh WR; Hooda S
    Talanta; 2024 May; 272():125785. PubMed ID: 38394750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Effect of Thioureas on the Detection of Chemical Warfare Agent Simulants.
    Ha S; Lee M; Seo HO; Song SG; Kim KS; Park CH; Kim IH; Kim YD; Song C
    ACS Sens; 2017 Aug; 2(8):1146-1151. PubMed ID: 28776366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the
    Kittle JD; Fisher BP; Esparza AJ; Morey AM; Iacono ST
    ACS Omega; 2017 Nov; 2(11):8301-8307. PubMed ID: 30023581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants.
    Long Y; Wang Y; Du X; Cheng L; Wu P; Jiang Y
    Sensors (Basel); 2015 Jul; 15(8):18302-14. PubMed ID: 26225975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor for interaction with CWA simulants.
    Zhang Z; Fan J; Yu J; Zheng S; Chen W; Li H; Wang Z; Zhang W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):944-9. PubMed ID: 22257173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.