BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32604667)

  • 1. Generation of Realistic Synthetic Validation Healthcare Datasets Using Generative Adversarial Networks.
    Bilici Ozyigit E; Arvanitis TN; Despotou G
    Stud Health Technol Inform; 2020 Jun; 272():322-325. PubMed ID: 32604667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for machine learning generation of realistic synthetic datasets for validating healthcare applications.
    Arvanitis TN; White S; Harrison S; Chaplin R; Despotou G
    Health Informatics J; 2022; 28(2):14604582221077000. PubMed ID: 35414269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine.
    Thambawita V; Isaksen JL; Hicks SA; Ghouse J; Ahlberg G; Linneberg A; Grarup N; Ellervik C; Olesen MS; Hansen T; Graff C; Holstein-Rathlou NH; Strümke I; Hammer HL; Maleckar MM; Halvorsen P; Riegler MA; Kanters JK
    Sci Rep; 2021 Nov; 11(1):21896. PubMed ID: 34753975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis.
    Coyner AS; Chen JS; Chang K; Singh P; Ostmo S; Chan RVP; Chiang MF; Kalpathy-Cramer J; Campbell JP;
    Ophthalmol Sci; 2022 Jun; 2(2):100126. PubMed ID: 36249693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating synthetic personal health data using conditional generative adversarial networks combining with differential privacy.
    Sun C; van Soest J; Dumontier M
    J Biomed Inform; 2023 Jul; 143():104404. PubMed ID: 37268168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosignal Data Augmentation Based on Generative Adversarial Networks.
    Haradal S; Hayashi H; Uchida S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():368-371. PubMed ID: 30440412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative adversarial networks for anonymous acneic face dataset generation.
    Zein H; Chantaf S; Fournier R; Nait-Ali A
    PLoS One; 2024; 19(4):e0297958. PubMed ID: 38625866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating photo-realistic training data to improve face recognition accuracy.
    Sáez Trigueros D; Meng L; Hartnett M
    Neural Netw; 2021 Feb; 134():86-94. PubMed ID: 33291019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image Turing test and its applications on synthetic chest radiographs by using the progressive growing generative adversarial network.
    Jang M; Bae HJ; Kim M; Park SY; Son AY; Choi SJ; Choe J; Choi HY; Hwang HJ; Noh HN; Seo JB; Lee SM; Kim N
    Sci Rep; 2023 Feb; 13(1):2356. PubMed ID: 36759636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data augmentation using generative adversarial neural networks on brain structural connectivity in multiple sclerosis.
    Barile B; Marzullo A; Stamile C; Durand-Dubief F; Sappey-Marinier D
    Comput Methods Programs Biomed; 2021 Jul; 206():106113. PubMed ID: 34004501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Generative Adversarial Network (GAN) Technique for Internet of Medical Things Data.
    Vaccari I; Orani V; Paglialonga A; Cambiaso E; Mongelli M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: Example using antiretroviral therapy for HIV.
    Kuo NI; Garcia F; Sönnerborg A; Böhm M; Kaiser R; Zazzi M; ; Polizzotto M; Jorm L; Barbieri S
    J Biomed Inform; 2023 Aug; 144():104436. PubMed ID: 37451495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network.
    Annala L; Neittaanmaki N; Paoli J; Zaar O; Polonen I
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1600-1603. PubMed ID: 33018300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semantic representation and comparative analysis of physical activity sensor observations using MOX2-5 sensor in real and synthetic datasets: a proof-of-concept-study.
    Chatterjee A; Gerdes MW; Prinz A; Riegler MA; Martinez SG
    Sci Rep; 2024 Feb; 14(1):4634. PubMed ID: 38409365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and evaluation of synthetic patient data.
    Goncalves A; Ray P; Soper B; Stevens J; Coyle L; Sales AP
    BMC Med Res Methodol; 2020 May; 20(1):108. PubMed ID: 32381039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative Adversarial Networks for Creating Synthetic Free-Text Medical Data: A Proposal for Collaborative Research and Re-use of Machine Learning Models.
    Kasthurirathne SN; Dexter G; Grannis SJ
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():335-344. PubMed ID: 34457148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning models trained on synthetic datasets of multiple sample sizes for the use of predicting blood pressure from clinical data in a national dataset.
    Arora A; Arora A
    PLoS One; 2023; 18(3):e0283094. PubMed ID: 36928534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating object compositionality in Generative Adversarial Networks.
    van Steenkiste S; Kurach K; Schmidhuber J; Gelly S
    Neural Netw; 2020 Oct; 130():309-325. PubMed ID: 32736226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SinGAN-Seg: Synthetic training data generation for medical image segmentation.
    Thambawita V; Salehi P; Sheshkal SA; Hicks SA; Hammer HL; Parasa S; Lange T; Halvorsen P; Riegler MA
    PLoS One; 2022; 17(5):e0267976. PubMed ID: 35500005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.