These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32604739)

  • 1. Effect of Chemical Solvents on the Wetting Behavior Over Time of Femtosecond Laser Structured Ti6Al4V Surfaces.
    Schnell G; Polley C; Bartling S; Seitz H
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32604739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Experimental Investigation of Controlled Changes in Wettability of Laser-Treated Surfaces after Various Post Treatment Methods.
    Primus T; Zeman P; Brajer J; Kožmín P; Syrovátka Š
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33926001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond Laser Nano/Micro Textured Ti6Al4V Surfaces-Effect on Wetting and MG-63 Cell Adhesion.
    Schnell G; Staehlke S; Duenow U; Nebe JB; Seitz H
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31323960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Texturing Environment on Wetting of Biomimetic Superhydrophobic Surfaces Designed by Femtosecond Laser Texturing.
    Basset S; Heisbourg G; Pascale-Hamri A; Benayoun S; Valette S
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Adventitious Carbon Groups on the Wetting of Copper: A Study on the Effect of Microstructure on the Static Contact Angle.
    Lößlein SM; Merz R; Müller DW; Kopnarski M; Mücklich F
    Langmuir; 2023 Aug; 39(34):12020-12031. PubMed ID: 37578946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How droplets move on laser-structured surfaces: Determination of droplet adhesion forces on nano- and microstructured surfaces.
    Schnell G; Polley C; Thomas R; Bartling S; Wagner J; Springer A; Seitz H
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):951-964. PubMed ID: 36327711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Laser Pulse Overlap and Scanning Line Overlap on Femtosecond Laser-Structured Ti6Al4V Surfaces.
    Schnell G; Duenow U; Seitz H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure.
    Yang Z; Liu X; Tian Y
    J Colloid Interface Sci; 2019 Jan; 533():268-277. PubMed ID: 30170278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construct hierarchical superhydrophobic silicon surfaces by chemical etching.
    Zhou Y; He B; Yang Y; Wang F; Liu W; Wang P; Zhang W; Bello I; Lee ST
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2292-7. PubMed ID: 21449383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct laser writing of hydrophobic and hydrophilic valves in the same material applied to centrifugal microfluidics.
    Vargas MJT; Nieuwoudt MK; Arul R; Williams DE; Simpson MC
    RSC Adv; 2023 Jul; 13(32):22302-22314. PubMed ID: 37497087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambient-mediated wetting on smooth surfaces.
    Orejon D; Oh J; Preston DJ; Yan X; Sett S; Takata Y; Miljkovic N; Sefiane K
    Adv Colloid Interface Sci; 2024 Feb; 324():103075. PubMed ID: 38219342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces.
    Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N
    ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Fabrication of Super-Hydrophobic Surface on Inconel Alloy via Nanosecond Laser Ablation.
    Yang Z; Tian Y; Zhao Y; Yang C
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating.
    Maurer JA; Miller MJ; Bartolucci SF
    J Colloid Interface Sci; 2018 Aug; 524():204-208. PubMed ID: 29655138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces.
    Gregorčič P; Conradi M; Hribar L; Hočevar M
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography versus chemistry - How can we control surface wetting?
    Lößlein SM; Mücklich F; Grützmacher PG
    J Colloid Interface Sci; 2022 Mar; 609():645-656. PubMed ID: 34839911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterned superhydrophobic metallic surfaces.
    Kietzig AM; Hatzikiriakos SG; Englezos P
    Langmuir; 2009 Apr; 25(8):4821-7. PubMed ID: 19267439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.