BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 32605023)

  • 1. Targeting the Redox Landscape in Cancer Therapy.
    Narayanan D; Ma S; Özcelik D
    Cancers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts.
    Hyun DH
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32645959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.
    Tian H; Gao Z; Wang G; Li H; Zheng J
    Tumour Biol; 2016 Jan; 37(1):141-50. PubMed ID: 26566628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.
    Marengo B; Nitti M; Furfaro AL; Colla R; Ciucis CD; Marinari UM; Pronzato MA; Traverso N; Domenicotti C
    Oxid Med Cell Longev; 2016; 2016():6235641. PubMed ID: 27418953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells.
    Yang SP; Yang XZ; Cao GP
    Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidants, oxidative damage and oxygen deprivation stress: a review.
    Blokhina O; Virolainen E; Fagerstedt KV
    Ann Bot; 2003 Jan; 91 Spec No(2):179-94. PubMed ID: 12509339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging.
    Ewald CY
    Antioxidants (Basel); 2018 Sep; 7(10):. PubMed ID: 30274229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Selenium compounds in redox regulation of inflammation and apoptosis].
    Rusetskaya NY; Fedotov IV; Koftina VA; Borodulin VB
    Biomed Khim; 2019 Apr; 65(3):165-179. PubMed ID: 31258141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox signaling in the gastrointestinal tract.
    Pérez S; Taléns-Visconti R; Rius-Pérez S; Finamor I; Sastre J
    Free Radic Biol Med; 2017 Mar; 104():75-103. PubMed ID: 28062361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
    Jezek P; Hlavatá L
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox homeostasis of breast cancer lineages contributes to differential cell death response to exogenous hydrogen peroxide.
    Hecht F; Cazarin JM; Lima CE; Faria CC; Leitão AA; Ferreira AC; Carvalho DP; Fortunato RS
    Life Sci; 2016 Aug; 158():7-13. PubMed ID: 27328417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.
    Gallorini M; Petzel C; Bolay C; Hiller KA; Cataldi A; Buchalla W; Krifka S; Schweikl H
    Biomaterials; 2015 Jul; 56():114-28. PubMed ID: 25934285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.
    He L; He T; Farrar S; Ji L; Liu T; Ma X
    Cell Physiol Biochem; 2017; 44(2):532-553. PubMed ID: 29145191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Oxygen Species: A Key Constituent in Cancer Survival.
    Kumari S; Badana AK; G MM; G S; Malla R
    Biomark Insights; 2018; 13():1177271918755391. PubMed ID: 29449774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation.
    Hyeon S; Lee H; Yang Y; Jeong W
    Free Radic Biol Med; 2013 Dec; 65():789-799. PubMed ID: 23954472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.