These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 32605077)

  • 1. Brain-Computer Interface-Based Humanoid Control: A Review.
    Chamola V; Vineet A; Nayyar A; Hossain E
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32605077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.
    Choi B; Jo S
    PLoS One; 2013; 8(9):e74583. PubMed ID: 24023953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An SSVEP based BCI to control a humanoid robot by using portable EEG device.
    Güneysu A; Akin HL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6905-8. PubMed ID: 24111332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of the Graphic Structures of Humanoid Robot on N200 and P300 Potentials.
    Li M; Yang G; Xu G
    IEEE Trans Neural Syst Rehabil Eng; 2020 Sep; 28(9):1944-1954. PubMed ID: 32746323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Integrated Machine Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable Model.
    Hashem HA; Abdulazeem Y; Labib LM; Elhosseini MA; Shehata M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a humanoid robot by a noninvasive brain-computer interface in humans.
    Bell CJ; Shenoy P; Chalodhorn R; Rao RP
    J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online control of a humanoid robot through hand movement imagination using CSP and ECoG based features.
    Kapeller C; Gergondet P; Kamada K; Ogawa H; Takeuchi F; Ortner R; Pruckl R; Kheddar A; Scharinger J; Guger C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1765-8. PubMed ID: 26736620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Invariant Patterns Based on a Convolutional Neural Network and Big Electroencephalography Data for Subject-Independent P300 Brain-Computer Interfaces.
    Gao W; Yu T; Yu JG; Gu Z; Li K; Huang Y; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1047-1057. PubMed ID: 34033543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
    Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS
    Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface.
    Batula AM; Kim YE; Ayaz H
    Biomed Res Int; 2017; 2017():1463512. PubMed ID: 28804712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain Computer Interfaces in Rehabilitation Medicine.
    Bockbrader MA; Francisco G; Lee R; Olson J; Solinsky R; Boninger ML
    PM R; 2018 Sep; 10(9 Suppl 2):S233-S243. PubMed ID: 30269808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Brain-Robot Interaction System by Fusing Human and Machine Intelligence.
    Mao X; Li W; Lei C; Jin J; Duan F; Chen S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):533-542. PubMed ID: 30716043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of an SSVEP-based intelligent home service robot system.
    Zhang Y; Gao Q; Song Y; Wang Z
    Technol Health Care; 2021; 29(3):541-556. PubMed ID: 33074201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Human-Humanoid Interaction Through the Use of BCI for Locked-In ALS Patients Using Neuro-Biological Feedback Fusion.
    Sorbello R; Tramonte S; Giardina ME; La Bella V; Spataro R; Allison B; Guger C; Chella A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):487-497. PubMed ID: 28727554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control.
    Padfield N; Camilleri K; Camilleri T; Fabri S; Bugeja M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interface technology: a review of the Second International Meeting.
    Vaughan TM; Heetderks WJ; Trejo LJ; Rymer WZ; Weinrich M; Moore MM; Kübler A; Dobkin BH; Birbaumer N; Donchin E; Wolpaw EW; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):94-109. PubMed ID: 12899247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine.
    Gao L; Cheng W; Zhang J; Wang J
    Rev Sci Instrum; 2016 Aug; 87(8):085110. PubMed ID: 27587163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.