BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32605148)

  • 21. Emerging MXene-Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception.
    Lai QT; Zhao XH; Sun QJ; Tang Z; Tang XG; Roy VAL
    Small; 2023 Jul; 19(27):e2300283. PubMed ID: 36965088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Freestanding and Scalable Force-Softness Bimodal Sensor Arrays for Haptic Body-Feature Identification.
    Cui Z; Wang W; Xia H; Wang C; Tu J; Ji S; Tan JMR; Liu Z; Zhang F; Li W; Lv Z; Li Z; Guo W; Koh NY; Ng KB; Feng X; Zheng Y; Chen X
    Adv Mater; 2022 Nov; 34(47):e2207016. PubMed ID: 36134530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing.
    Wang L; Liu Y; Liu Q; Zhu Y; Wang H; Xie Z; Yu X; Zi Y
    Microsyst Nanoeng; 2020; 6():59. PubMed ID: 34567670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin.
    Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN.
    Pohtongkam S; Srinonchat J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli.
    Lin W; Wang B; Peng G; Shan Y; Hu H; Yang Z
    Adv Sci (Weinh); 2021 Feb; 8(3):2002817. PubMed ID: 33552864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks.
    He Z; Chen W; Liang B; Liu C; Yang L; Lu D; Mo Z; Zhu H; Tang Z; Gui X
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12816-12823. PubMed ID: 29582991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Strategy for Multigas Identification Using Multielectrical Parameters Extracted from a Single Carbon-Based Field-Effect Transistor Sensor.
    Shi L; Tang P; Hu J; Zhang Y
    ACS Sens; 2024 Jun; 9(6):3126-3136. PubMed ID: 38843033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.
    Shao C; Tanaka S; Nakayama T; Hata Y; Bartley T; Nonomura Y; Muroyama M
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 29061954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.
    Shin SH; Ji S; Choi S; Pyo KH; Wan An B; Park J; Kim J; Kim JY; Lee KS; Kwon SY; Heo J; Park BG; Park JU
    Nat Commun; 2017 Mar; 8():14950. PubMed ID: 28361867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications.
    Zhang Z; Liu G; Li Z; Zhang W; Meng Q
    Adv Colloid Interface Sci; 2023 Oct; 320():102988. PubMed ID: 37690330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three realizations and comparison of hardware for piezoresistive tactile sensors.
    Vidal-Verdú F; Oballe-Peinado Ó; Sánchez-Durán JA; Castellanos-Ramos J; Navas-González R
    Sensors (Basel); 2011; 11(3):3249-66. PubMed ID: 22163797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of haptic based piezoresistive artificial fingertip: Toward efficient tactile sensing systems for humanoids.
    TermehYousefi A; Azhari S; Khajeh A; Hamidon MN; Tanaka H
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1098-1103. PubMed ID: 28531983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of Transistor-Based Biochemical Sensors.
    Gao Q; Fu J; Li S; Ming D
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible Piezoresistive Tactile Sensor Based on Polymeric Nanocomposites with Grid-Type Microstructure.
    Lee DH; Chuang CH; Shaikh MO; Dai YS; Wang SY; Wen ZH; Yen CK; Liao CF; Pan CT
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33923849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Solution to Enhance the Sensitivity of a Self-Powered Pressure Sensor for an Artificial Tactile System.
    Sim M; Lee KH; Jeong Y; Shin JH; Sohn JI; Cha SN; Jang JE
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):804-811. PubMed ID: 27810832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. All MoS
    Park YJ; Sharma BK; Shinde SM; Kim MS; Jang B; Kim JH; Ahn JH
    ACS Nano; 2019 Mar; 13(3):3023-3030. PubMed ID: 30768896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Self-Powered Piezoelectric Nanofibrous Membrane as Wearable Tactile Sensor for Human Body Motion Monitoring and Recognition.
    Li J; Yin J; Wee MGV; Chinnappan A; Ramakrishna S
    Adv Fiber Mater; 2023 Apr; ():1-14. PubMed ID: 37361108
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.