BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32605158)

  • 41. Transcriptional activation of long terminal repeat retrotransposon sequences in the genome of pitaya under abiotic stress.
    Nie Q; Qiao G; Peng L; Wen X
    Plant Physiol Biochem; 2019 Feb; 135():460-468. PubMed ID: 30497974
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional analysis of TaDi19A, a salt-responsive gene in wheat.
    Li S; Xu C; Yang Y; Xia G
    Plant Cell Environ; 2010 Jan; 33(1):117-29. PubMed ID: 19895399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis.
    Zhang Z; Wang J; Zhang R; Huang R
    Plant J; 2012 Jul; 71(2):273-87. PubMed ID: 22417285
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.
    Zaidi I; Ebel C; Belgaroui N; Ghorbel M; Amara I; Hanin M
    J Plant Physiol; 2016 Apr; 193():12-21. PubMed ID: 26927025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant.
    Bahieldin A; Atef A; Edris S; Gadalla NO; Ali HM; Hassan SM; Al-Kordy MA; Ramadan AM; Makki RM; Al-Hajar AS; El-Domyati FM
    BMC Plant Biol; 2016 Oct; 16(1):216. PubMed ID: 27716054
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit.
    Li X; Zhu X; Mao J; Zou Y; Fu D; Chen W; Lu W
    Plant Physiol Biochem; 2013 Sep; 70():81-92. PubMed ID: 23770597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis.
    Yu Y; Liu A; Duan X; Wang S; Sun X; Duanmu H; Zhu D; Chen C; Cao L; Xiao J; Li Q; Nisa ZU; Zhu Y; Ding X
    Planta; 2016 Sep; 244(3):681-98. PubMed ID: 27125386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.
    Ma X; Cui W; Liang W; Huang Z
    Plant Physiol Biochem; 2015 Dec; 97():187-95. PubMed ID: 26476792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Ramie bZIP Transcription Factor BnbZIP2 Is Involved in Drought, Salt, and Heavy Metal Stress Response.
    Huang C; Zhou J; Jie Y; Xing H; Zhong Y; Yu W; She W; Ma Y; Liu Z; Zhang Y
    DNA Cell Biol; 2016 Dec; 35(12):776-786. PubMed ID: 27845851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis.
    Yuan Y; Fang L; Karungo SK; Zhang L; Gao Y; Li S; Xin H
    Plant Cell Rep; 2016 Mar; 35(3):655-66. PubMed ID: 26687967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress.
    Sripinyowanich S; Chamnanmanoontham N; Udomchalothorn T; Maneeprasopsuk S; Santawee P; Buaboocha T; Qu LJ; Gu H; Chadchawan S
    Plant Sci; 2013 Dec; 213():67-78. PubMed ID: 24157209
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice.
    Li X; Hou S; Gao Q; Zhao P; Chen S; Qi D; Lee BH; Cheng L; Liu G
    Plant Cell Physiol; 2013 Jul; 54(7):1172-85. PubMed ID: 23695503
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative Metabolic Profiling in Pulp and Peel of Green and Red Pitayas (
    Lin X; Gao H; Ding Z; Zhan R; Zhou Z; Ming J
    Biomed Res Int; 2021; 2021():6546170. PubMed ID: 33778068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis.
    Cheng L; Li X; Huang X; Ma T; Liang Y; Ma X; Peng X; Jia J; Chen S; Chen Y; Deng B; Liu G
    Plant Physiol Biochem; 2013 Sep; 70():252-60. PubMed ID: 23800660
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton.
    Long L; Yang WW; Liao P; Guo YW; Kumar A; Gao W
    Plant Sci; 2019 Apr; 281():72-81. PubMed ID: 30824063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Stress-Associated Protein,
    Li J; Sun P; Xia Y; Zheng G; Sun J; Jia H
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis.
    Yu X; Liu Y; Wang S; Tao Y; Wang Z; Shu Y; Peng H; Mijiti A; Wang Z; Zhang H; Ma H
    Plant Cell Rep; 2016 Mar; 35(3):613-27. PubMed ID: 26650836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response.
    An JP; Yao JF; Xu RR; You CX; Wang XF; Hao YJ
    Physiol Plant; 2018 Nov; 164(3):279-289. PubMed ID: 29527680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression of a cell wall damage induced transcription factor, OsWRKY42, leads to enhanced callose deposition and tolerance to salt stress but does not enhance tolerance to bacterial infection.
    Pillai SE; Kumar C; Patel HK; Sonti RV
    BMC Plant Biol; 2018 Sep; 18(1):177. PubMed ID: 30176792
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance.
    Lin RC; Park HJ; Wang HY
    Mol Plant; 2008 Jan; 1(1):42-57. PubMed ID: 20031913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.