BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32605523)

  • 1. Prediction of failure in cancellous bone using extended finite element method.
    Salem M; Westover L; Adeeb S; Duke K
    Proc Inst Mech Eng H; 2020 Sep; 234(9):988-999. PubMed ID: 32605523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Equivalent Constitutive Model of Cancellous Bone With Fracture Prediction.
    Salem M; Westover L; Adeeb S; Duke K
    J Biomech Eng; 2020 Dec; 142(12):. PubMed ID: 32346728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity.
    Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ
    Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of insertion torque and stiffness of a dental implant in bovine trabecular bone using explicit micro-finite element analysis.
    Ovesy M; Indermaur M; Zysset PK
    J Mech Behav Biomed Mater; 2019 Oct; 98():301-310. PubMed ID: 31295709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties: separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical stereology).
    Wang X; Zauel RR; Rao DS; Fyhrie DP
    Bone; 2008 Jun; 42(6):1184-92. PubMed ID: 18378204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of fracture initiation and propagation in pelvic bones.
    Salem M; Westover L; Adeeb S; Duke K
    Comput Methods Biomech Biomed Engin; 2022 May; 25(7):808-820. PubMed ID: 34587835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-Finite Element analysis will overestimate the compressive stiffness of fractured cancellous bone.
    Arias-Moreno AJ; Ito K; van Rietbergen B
    J Biomech; 2016 Sep; 49(13):2613-2618. PubMed ID: 27260021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element prediction of fatigue damage growth in cancellous bone.
    Hambli R; Frikha S; Toumi H; Tavares JM
    Comput Methods Biomech Biomed Engin; 2016; 19(5):563-70. PubMed ID: 26077722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
    Kowalczyk P
    J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach.
    Harrison NM; McDonnell P; Mullins L; Wilson N; O'Mahoney D; McHugh PE
    Biomech Model Mechanobiol; 2013 Apr; 12(2):225-41. PubMed ID: 22527367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components.
    Allahyari P; Silani M; Yaghoubi V; Milovanovic P; Schmidt FN; Busse B; Qwamizadeh M
    J Mech Behav Biomed Mater; 2023 Jan; 137():105530. PubMed ID: 36334581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterising variability and regional correlations of microstructure and mechanical competence of human tibial trabecular bone: An in-vivo HR-pQCT study.
    Du J; Brooke-Wavell K; Paggiosi MA; Hartley C; Walsh JS; Silberschmidt VV; Li S
    Bone; 2019 Apr; 121():139-148. PubMed ID: 30658093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations.
    Werner B; Ovesy M; Zysset PK
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3188. PubMed ID: 30786166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.