These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32606307)

  • 1. Larval behaviour, dispersal and population connectivity in the deep sea.
    Gary SF; Fox AD; Biastoch A; Roberts JM; Cunningham SA
    Sci Rep; 2020 Jun; 10(1):10675. PubMed ID: 32606307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successful validation of a larval dispersal model using genetic parentage data.
    Bode M; Leis JM; Mason LB; Williamson DH; Harrison HB; Choukroun S; Jones GP
    PLoS Biol; 2019 Jul; 17(7):e3000380. PubMed ID: 31299043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are larvae of demersal fishes plankton or nekton?
    Leis JM
    Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean sprawl facilitates dispersal and connectivity of protected species.
    Henry LA; Mayorga-Adame CG; Fox AD; Polton JA; Ferris JS; McLellan F; McCabe C; Kutti T; Roberts JM
    Sci Rep; 2018 Aug; 8(1):11346. PubMed ID: 30115932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing connected marine reserves in the face of global warming.
    Álvarez-Romero JG; Munguía-Vega A; Beger M; Del Mar Mancha-Cisneros M; Suárez-Castillo AN; Gurney GG; Pressey RL; Gerber LR; Morzaria-Luna HN; Reyes-Bonilla H; Adams VM; Kolb M; Graham EM; VanDerWal J; Castillo-López A; Hinojosa-Arango G; Petatán-Ramírez D; Moreno-Baez M; Godínez-Reyes CR; Torre J
    Glob Chang Biol; 2018 Feb; 24(2):e671-e691. PubMed ID: 29274104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae.
    Queiroga H; Blanton J
    Adv Mar Biol; 2005; 47():107-214. PubMed ID: 15596167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse engineering field-derived vertical distribution profiles to infer larval swimming behaviors.
    James MK; Polton JA; Brereton AR; Howell KL; Nimmo-Smith WAM; Knights AM
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11818-11823. PubMed ID: 31123143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design.
    Baco AR; Etter RJ; Ribeiro PA; von der Heyden S; Beerli P; Kinlan BP
    Mol Ecol; 2016 Jul; 25(14):3276-98. PubMed ID: 27146215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersal and population connectivity are phenotype dependent in a marine metapopulation.
    Fobert EK; Treml EA; Swearer SE
    Proc Biol Sci; 2019 Aug; 286(1909):20191104. PubMed ID: 31455189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing larval connectivity for marine spatial planning in the Adriatic.
    Bray L; Kassis D; Hall-Spencer JM
    Mar Environ Res; 2017 Apr; 125():73-81. PubMed ID: 28187325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish.
    Legrand T; Di Franco A; Ser-Giacomi E; Caló A; Rossi V
    Mar Environ Res; 2019 Oct; 151():104761. PubMed ID: 31399203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modeling approach of the influence of local hydrodynamic conditions on larval dispersal at hydrothermal vents.
    Bailly-Bechet M; Kerszberg M; Gaill F; Pradillon F
    J Theor Biol; 2008 Dec; 255(3):320-31. PubMed ID: 18834891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of larval morphology affect swimming: insights from the sand dollars Dendraster excentricus.
    Chan KY
    Integr Comp Biol; 2012 Oct; 52(4):458-69. PubMed ID: 22753391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larval dispersal connects fish populations in a network of marine protected areas.
    Planes S; Jones GP; Thorrold SR
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5693-7. PubMed ID: 19307588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying critical regions in small-world marine metapopulations.
    Watson JR; Siegel DA; Kendall BE; Mitarai S; Rassweiller A; Gaines SD
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):E907-13. PubMed ID: 21987813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development.
    Modica MV; Russini V; Fassio G; Oliverio M
    Mar Environ Res; 2017 Jun; 127():92-101. PubMed ID: 28413103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auto-correlated directional swimming can enhance settlement success and connectivity in fish larvae.
    Berenshtein I; Paris CB; Gildor H; Fredj E; Amitai Y; Lapidot O; Kiflawi M
    J Theor Biol; 2018 Feb; 439():76-85. PubMed ID: 29154908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the current state of ecological connectivity in a large marine protected area system.
    Roberts KE; Cook CN; Beher J; Treml EA
    Conserv Biol; 2021 Apr; 35(2):699-710. PubMed ID: 32623761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age-structure.
    Guizien K; Bramanti L
    Theor Biol Forum; 2014; 107(1-2):47-56. PubMed ID: 25936212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity and Dispersal Patterns of Protected Biogenic Reefs: Implications for the Conservation of Modiolus modiolus (L.) in the Irish Sea.
    Gormley K; Mackenzie C; Robins P; Coscia I; Cassidy A; James J; Hull A; Piertney S; Sanderson W; Porter J
    PLoS One; 2015; 10(12):e0143337. PubMed ID: 26625263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.