BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32606662)

  • 1. Surfactin-Loaded ĸ-Carrageenan Oligosaccharides Entangled Cellulose Nanofibers as a Versatile Vehicle Against Periodontal Pathogens.
    Johnson A; He JL; Kong F; Huang YC; Thomas S; Lin HV; Kong ZL
    Int J Nanomedicine; 2020; 15():4021-4047. PubMed ID: 32606662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment.
    Johnson A; Kong F; Miao S; Lin HV; Thomas S; Huang YC; Kong ZL
    Sci Rep; 2020 Oct; 10(1):18037. PubMed ID: 33093521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Vitro Antibacterial and Anti-Inflammatory Effects of Surfactin-Loaded Nanoparticles for Periodontitis Treatment.
    Johnson A; Kong F; Miao S; Thomas S; Ansar S; Kong ZL
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material.
    Tavakoli S; Kharaziha M; Nemati S; Kalateh A
    Carbohydr Polym; 2021 Jan; 251():117013. PubMed ID: 33142576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development.
    Jack AA; Nordli HR; Powell LC; Farnell DJJ; Pukstad B; Rye PD; Thomas DW; Chinga-Carrasco G; Hill KE
    Biomacromolecules; 2019 Aug; 20(8):2953-2961. PubMed ID: 31251598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, antimicrobial activity, and sustainable release of novel α-aminophosphonate derivatives loaded carrageenan cryogel.
    Elsherbiny DA; Abdelgawad AM; El-Naggar ME; El-Sherbiny RA; El-Rafie MH; El-Sayed IE
    Int J Biol Macromol; 2020 Nov; 163():96-107. PubMed ID: 32615220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment.
    Kumari P; Pathak G; Gupta R; Sharma D; Meena A
    Daru; 2019 Dec; 27(2):683-693. PubMed ID: 31654377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers.
    Cui Z; Lin J; Zhan C; Wu J; Shen S; Si J; Wang Q
    J Biomater Sci Polym Ed; 2020 Apr; 31(5):561-577. PubMed ID: 31920175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels.
    Deng W; Tang Y; Mao J; Zhou Y; Chen T; Zhu X
    Int J Biol Macromol; 2021 Oct; 189():890-899. PubMed ID: 34455006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity.
    Li X; Liu Y; Yu Y; Chen W; Liu Y; Yu H
    Carbohydr Polym; 2019 Mar; 207():160-168. PubMed ID: 30599995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films.
    Shankar S; Reddy JP; Rhim JW; Kim HY
    Carbohydr Polym; 2015 Mar; 117():468-475. PubMed ID: 25498660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Synthesis and Characterization of Palm CNF-ZnO Nanocomposites with Antibacterial and Reinforcing Properties.
    Supramaniam J; Low DYS; Wong SK; Tan LTH; Leo BF; Goh BH; Darji D; Mohd Rasdi FR; Chan KG; Lee LH; Tang SY
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide.
    Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q
    Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZnO nanoparticles stabilized oregano essential oil Pickering emulsion for functional cellulose nanofibrils packaging films with antimicrobial and antioxidant activity.
    Wu M; Zhou Z; Yang J; Zhang M; Cai F; Lu P
    Int J Biol Macromol; 2021 Nov; 190():433-440. PubMed ID: 34481853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration.
    Olmos-Juste R; Alonso-Lerma B; Pérez-Jiménez R; Gabilondo N; Eceiza A
    Carbohydr Polym; 2021 Jul; 264():118026. PubMed ID: 33910718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic cross-linking of cellulose nanofibers: an approach to enhance mechanical stability for dynamic adsorption.
    Muqeet M; Qureshi UA; Mahar RB; Khatri Z; Ahmed F; Kim IS
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28842-28851. PubMed ID: 31376130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: Morphological, thermal, antimicrobial and release properties.
    Mohammadalinejhad S; Almasi H; Esmaiili M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110115. PubMed ID: 31546384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of cellulose nanofibers using immobilized cellulase.
    Yassin MA; Gad AAM; Ghanem AF; Abdel Rehim MH
    Carbohydr Polym; 2019 Feb; 205():255-260. PubMed ID: 30446102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites.
    Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships.
    Ravindran L; M S S; Thomas S
    Int J Biol Macromol; 2019 Jun; 131():858-870. PubMed ID: 30904530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.