These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32607286)

  • 1. Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China.
    Gao H; Yin X; Jiang X; Shi H; Yang Y; Wang C; Dai X; Chen Y; Wu X
    PeerJ; 2020; 8():e9376. PubMed ID: 32607286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microbial ecology of wine grape berries.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries.
    Hall ME; O'Bryon I; Wilcox WF; Osier MV; Cadle-Davidson L
    PLoS One; 2019; 14(3):e0211378. PubMed ID: 30917111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California.
    Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD
    Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emerging contribution of social wasps to grape rot disease ecology.
    Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT
    PeerJ; 2017; 5():e3223. PubMed ID: 28462032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sour rot-damaged grapes are sources of wine spoilage yeasts.
    Barata A; González S; Malfeito-Ferreira M; Querol A; Loureiro V
    FEMS Yeast Res; 2008 Nov; 8(7):1008-17. PubMed ID: 18554306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot.
    Barata A; Santos SC; Malfeito-Ferreira M; Loureiro V
    Microb Ecol; 2012 Aug; 64(2):416-30. PubMed ID: 22438040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes.
    Lleixà J; Kioroglou D; Mas A; Portillo MDC
    Int J Food Microbiol; 2018 Sep; 281():36-46. PubMed ID: 29807290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in sour rotten grape berry microbiota during ripening and wine fermentation.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Mar; 154(3):152-61. PubMed ID: 22277696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Microbial Community Diversity on the Epidermis of Wine Grapes in Manasi's Vineyard, Xinjiang.
    Xu X; Miao Y; Wang H; Du J; Wang C; Shi X; Wang B
    Foods; 2022 Oct; 11(20):. PubMed ID: 37430923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China.
    Wei YJ; Wu Y; Yan YZ; Zou W; Xue J; Ma WR; Wang W; Tian G; Wang LY
    PLoS One; 2018; 13(3):e0193097. PubMed ID: 29565999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of microbial community diversity of muscadine grape skins.
    Sun D; Qu J; Huang Y; Lu J; Yin L
    Food Res Int; 2021 Jul; 145():110417. PubMed ID: 34112420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of gaseous ozone to counteract postharvest table grape sour rot.
    Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F
    Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and analysis of dynamic changes of microbial community associated with grape decay during storage.
    Huang P; Li J; Gong Q; Zhang Z; Wang B; Yang Z; Zheng X
    Food Microbiol; 2024 Oct; 123():104581. PubMed ID: 39038887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast species associated with wine grapes in China.
    Li SS; Cheng C; Li Z; Chen JY; Yan B; Han BZ; Reeves M
    Int J Food Microbiol; 2010 Mar; 138(1-2):85-90. PubMed ID: 20116124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community composition on grape surface controlled by geographical factors of different wine regions in Xinjiang, China.
    Gao F; Chen J; Xiao J; Cheng W; Zheng X; Wang B; Shi X
    Food Res Int; 2019 Aug; 122():348-360. PubMed ID: 31229088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes.
    Calvo-Garrido C; Viñas I; Elmer P; Usall J; Teixidó N
    Lett Appl Microbiol; 2013 Oct; 57(4):356-61. PubMed ID: 23789778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes.
    Lorenzini M; Cappello MS; Logrieco A; Zapparoli G
    Int J Food Microbiol; 2016 Dec; 238():56-62. PubMed ID: 27591387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep insights into fungal diversity in traditional Chinese sour soup by Illumina MiSeq sequencing.
    Lin LJ; Du FM; Zeng J; Liang ZJ; Zhang XY; Gao XY
    Food Res Int; 2020 Nov; 137():109439. PubMed ID: 33233120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Community Analyses Associated with Nine Varieties of Wine Grape Carposphere Based on High-Throughput Sequencing.
    Zhang S; Chen X; Zhong Q; Zhuang X; Bai Z
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31835425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.