These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3260772)

  • 21. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proximal and distal dog coronary arteries respond differently to basal EDRF but not to NO.
    Hoeffner U; Boulanger C; Vanhoutte PM
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H828-31. PubMed ID: 2784288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abluminal release and asymmetrical response of the rabbit arterial wall to endothelium-derived relaxing factor.
    Bassenge E; Busse R; Pohl U
    Circ Res; 1987 Nov; 61(5 Pt 2):II68-73. PubMed ID: 3117407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of the acetylcholine-induced relaxation of canine isolated basilar artery by potassium-conductance blockers.
    Elliott DA; Gu M; Ong BY; Bose D
    Can J Physiol Pharmacol; 1991 Jun; 69(6):786-91. PubMed ID: 1913325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that cGMP is the mediator of endothelium-dependent inhibition of contractile responses of rat arteries to alpha-adrenoceptor stimulation.
    MacLeod KM; Ng DD; Harris KH; Diamond J
    Mol Pharmacol; 1987 Jul; 32(1):59-64. PubMed ID: 2885738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Venous and arterial endothelia: different dilator abilities in dog vessels.
    Seidel CL; LaRochelle J
    Circ Res; 1987 Apr; 60(4):626-30. PubMed ID: 3109760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurogenic contraction and relaxation of human penile deep dorsal vein.
    Segarra G; Medina P; Domenech C; Martínez León JB; Vila JM; Aldasoro M; Lluch S
    Br J Pharmacol; 1998 Jun; 124(4):788-94. PubMed ID: 9690872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of SKF 525A on the release of nitric oxide and prostacyclin from endothelial cells.
    Rees DD; Palmer RM; Moncada S
    Eur J Pharmacol; 1988 May; 150(1-2):149-54. PubMed ID: 3136027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time course of vascular reactivity to contracting and relaxing agents after endothelial denudation by balloon angioplasty in rat carotid artery.
    Lippolis L; Sorrentino R; Popolo A; Maffia P; Nasti C; d'Emmanuele di Villa Bianca R; Marzocco S; Autore G; Pinto A
    Atherosclerosis; 2003 Dec; 171(2):171-9. PubMed ID: 14644385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EDRF generation and release from perfused bovine pulmonary artery and vein.
    Ignarro LJ; Buga GM; Chaudhuri G
    Eur J Pharmacol; 1988 Apr; 149(1-2):79-88. PubMed ID: 3135198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Matrix metalloproteinase 2-induced venous dilation via hyperpolarization and activation of K+ channels: relevance to varicose vein formation.
    Raffetto JD; Ross RL; Khalil RA
    J Vasc Surg; 2007 Feb; 45(2):373-80. PubMed ID: 17264019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins?
    Miller VM; Vanhoutte PM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H1910-6. PubMed ID: 2513730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium-dependent relaxing factors do not affect the smooth muscle of portal-mesenteric veins.
    Feletou M; Hoeffner U; Vanhoutte PM
    Blood Vessels; 1989; 26(1):21-32. PubMed ID: 2785422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor.
    Gryglewski RJ; Palmer RM; Moncada S
    Nature; 1986 Apr 3-9; 320(6061):454-6. PubMed ID: 3007998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of haemoglobin and erythrocytes on the effects of EDRF, a smooth muscle inhibitory factor, and nitric oxide on vascular and non-vascular smooth muscle.
    Gillespie JS; Sheng H
    Br J Pharmacol; 1988 Dec; 95(4):1151-6. PubMed ID: 3265343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thimerosal induces endothelium-dependent vascular smooth muscle relaxations by interacting with thiol groups. Relaxations are likely to be mediated by endothelium-derived relaxing factor (EDRF).
    Förstermann U; Burgwitz K; Frölich JC
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Dec; 334(4):501-7. PubMed ID: 3102978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelium-derived vascular relaxing factor.
    Peach MJ; Loeb AL; Singer HA; Saye J
    Hypertension; 1985; 7(3 Pt 2):I94-100. PubMed ID: 2987129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.