BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32607899)

  • 1. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi.
    Kamei I; Uchida K; Ardianti V
    Appl Biochem Biotechnol; 2020 Nov; 192(3):895-909. PubMed ID: 32607899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of ethanol fermentation mechanism of ethanol producing white-rot fungus Phlebia sp. MG-60 by RNA-seq.
    Wang J; Suzuki T; Dohra H; Takigami S; Kako H; Soga A; Kamei I; Mori T; Kawagishi H; Hirai H
    BMC Genomics; 2016 Aug; 17(1):616. PubMed ID: 27515927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21.
    Singh N; Puri M; Tuli DK; Gupta RP; Barrow CJ; Mathur AS
    Anaerobe; 2018 Jun; 51():89-98. PubMed ID: 29729318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60.
    Tsuyama T; Yamaguchi M; Kamei I
    Bioresour Technol; 2017 Aug; 238():241-247. PubMed ID: 28433914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of MAP kinase HOG1 gene of white-rot fungus Phlebia sp. MG-60 inhibits the ethanol fermentation and mycelial growth.
    Motoda T; Chen FC; Tsuyama T; Tokumoto Y; Kijidani Y; Kamei I
    Biosci Biotechnol Biochem; 2023 Jan; 87(2):217-227. PubMed ID: 36610726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pretreatment on corn stover with low concentration of formic acid.
    Xu J; Thomsen MH; Thomsen AB
    J Microbiol Biotechnol; 2009 Aug; 19(8):845-50. PubMed ID: 19734724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K; Kanawaku R; Masumoto M; Yanase H
    Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60.
    Kamei I; Hirota Y; Mori T; Hirai H; Meguro S; Kondo R
    Bioresour Technol; 2012 May; 112():137-42. PubMed ID: 22425400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Butanol production from corn fiber xylan using Clostridium acetobutylicum.
    Qureshi N; Li XL; Hughes S; Saha BC; Cotta MA
    Biotechnol Prog; 2006; 22(3):673-80. PubMed ID: 16739948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity.
    Motoda T; Yamaguchi M; Tsuyama T; Kamei I
    J Biosci Bioeng; 2019 Jan; 127(1):66-72. PubMed ID: 30007481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.
    Schell DJ; Dowe N; Chapeaux A; Nelson RS; Jennings EW
    Bioresour Technol; 2016 Apr; 205():153-8. PubMed ID: 26826954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.
    Lee JW; Rodrigues RC; Kim HJ; Choi IG; Jeffries TW
    Bioresour Technol; 2010 Jun; 101(12):4379-85. PubMed ID: 20188541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae.
    de Almeida MN; Guimarães VM; Falkoski DL; Visser EM; Siqueira GA; Milagres AM; de Rezende ST
    J Biotechnol; 2013 Oct; 168(1):71-7. PubMed ID: 23942376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus
    Mukherjee S; Lodha TD; Madhuprakash J
    Microbiol Spectr; 2023 Jun; 11(3):e0502822. PubMed ID: 37071006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol.
    Chen Y; Dong B; Qin W; Xiao D
    Bioresour Technol; 2010 Sep; 101(18):7005-10. PubMed ID: 20403687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Katahira S; Fujita Y; Mizuike A; Fukuda H; Kondo A
    Appl Environ Microbiol; 2004 Sep; 70(9):5407-14. PubMed ID: 15345427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of aromatic compounds on biodegradation of [14C]-labeled xylan and mannan by the white-rot fungus Phlebia radiata.
    Rogalski J; Cho NS; Zadora J; Prendecka M; Choma A; Urbanik-Sypniewska T; Leonowicz A
    J Ind Microbiol Biotechnol; 2002 Mar; 28(3):168-72. PubMed ID: 12074091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor.
    Okamoto K; Uchii A; Kanawaku R; Yanase H
    Springerplus; 2014; 3():121. PubMed ID: 24624317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production.
    Saha BC; Kennedy GJ; Qureshi N; Cotta MA
    Biotechnol Prog; 2017 Mar; 33(2):365-374. PubMed ID: 27997076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading.
    Liu ZH; Chen HZ
    Bioresour Technol; 2016 Feb; 201():15-26. PubMed ID: 26615497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.