These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 32608413)
1. Injectable hydrogels based on MPEG-PCL-RGD and BMSCs for bone tissue engineering. Kim HJ; You SJ; Yang DH; Eun J; Park HK; Kim MS; Chun HJ Biomater Sci; 2020 Aug; 8(15):4334-4345. PubMed ID: 32608413 [TBL] [Abstract][Full Text] [Related]
2. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Kwon JS; Kim SW; Kwon DY; Park SH; Son AR; Kim JH; Kim MS Biomaterials; 2014 Jul; 35(20):5337-5346. PubMed ID: 24720878 [TBL] [Abstract][Full Text] [Related]
3. Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. He X; Yang X; Jabbari E Langmuir; 2012 Mar; 28(12):5387-97. PubMed ID: 22372823 [TBL] [Abstract][Full Text] [Related]
4. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering]. Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration. Reichert JC; Heymer A; Berner A; Eulert J; Nöth U Biomed Mater; 2009 Dec; 4(6):065001. PubMed ID: 19837997 [TBL] [Abstract][Full Text] [Related]
6. Repair of a Meniscal Defect in a Rabbit Model Through Use of a Thermosensitive, Injectable, In Situ Crosslinked Hydrogel With Encapsulated Bone Mesenchymal Stromal Cells and Transforming Growth Factor β1. Chen C; Song J; Qiu J; Zhao J Am J Sports Med; 2020 Mar; 48(4):884-894. PubMed ID: 31967854 [TBL] [Abstract][Full Text] [Related]
7. Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Wang T; Jiang XJ; Tang QZ; Li XY; Lin T; Wu DQ; Zhang XZ; Okello E Acta Biomater; 2009 Oct; 5(8):2939-44. PubMed ID: 19426843 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel. Jang JY; Park SH; Park JH; Lee BK; Yun JH; Lee B; Kim JH; Min BH; Kim MS Macromol Biosci; 2016 Aug; 16(8):1158-69. PubMed ID: 27074749 [TBL] [Abstract][Full Text] [Related]
9. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Yang F; Williams CG; Wang DA; Lee H; Manson PN; Elisseeff J Biomaterials; 2005 Oct; 26(30):5991-8. PubMed ID: 15878198 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model. Chang CS; Yang CY; Hsiao HY; Chen L; Chu IM; Cheng MH; Tsao CH Eur Cell Mater; 2018 Jun; 35():350-364. PubMed ID: 29926464 [TBL] [Abstract][Full Text] [Related]
11. In-situ forming injectable GFOGER-conjugated BMSCs-laden hydrogels for osteochondral regeneration. Ha MY; Yang DH; You SJ; Kim HJ; Chun HJ NPJ Regen Med; 2023 Jan; 8(1):2. PubMed ID: 36609447 [TBL] [Abstract][Full Text] [Related]
12. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540 [TBL] [Abstract][Full Text] [Related]
13. Injectable in situ-forming hydrogel for cartilage tissue engineering. Kwon JS; Yoon SM; Kwon DY; Kim DY; Tai GZ; Jin LM; Song B; Lee B; Kim JH; Han DK; Min BH; Kim MS J Mater Chem B; 2013 Jul; 1(26):3314-3321. PubMed ID: 32261040 [TBL] [Abstract][Full Text] [Related]
14. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. He X; Ma J; Jabbari E Langmuir; 2008 Nov; 24(21):12508-16. PubMed ID: 18837524 [TBL] [Abstract][Full Text] [Related]
15. Injectable collagen/RGD systems for bone tissue engineering applications. Kung FC Biomed Mater Eng; 2018; 29(2):241-251. PubMed ID: 29457597 [TBL] [Abstract][Full Text] [Related]
16. Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Ren K; Cui H; Xu Q; He C; Li G; Chen X Biomacromolecules; 2016 Dec; 17(12):3862-3871. PubMed ID: 27775890 [TBL] [Abstract][Full Text] [Related]
17. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
18. The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD-modified poly(ethylene glycol) hydrogels. Steinmetz NJ; Bryant SJ Acta Biomater; 2011 Nov; 7(11):3829-40. PubMed ID: 21742067 [TBL] [Abstract][Full Text] [Related]
19. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications. Oroojalian F; Jahanafrooz Z; Chogan F; Rezayan AH; Malekzade E; Rezaei SJT; Nabid MR; Sahebkar A J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]