BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 32608464)

  • 21. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of microchannel height on the acoustophoretic motion of sub-micron particles.
    Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC
    Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust global arrangement by coherent enhancement in Huygens-Fresnel traveling surface acoustic wave interference field.
    Yu N; Geng W; Liu Y; Zhang H; Lu H; Duan Z; Yang L; Zhang Y; Chou X
    Anal Bioanal Chem; 2024 Jan; 416(2):509-518. PubMed ID: 37989848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting.
    Collins DJ; Neild A; Ai Y
    Lab Chip; 2016 Feb; 16(3):471-9. PubMed ID: 26646200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate.
    Van Assche D; Reithuber E; Qiu W; Laurell T; Henriques-Normark B; Mellroth P; Ohlsson P; Augustsson P
    Sci Rep; 2020 Feb; 10(1):3670. PubMed ID: 32111864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasound focuser: A multi-cylindrical source configuration and entrapped particles dynamics.
    Rajabi M; Mojahed A; Hajiahmadi A
    Ultrasonics; 2019 Aug; 97():38-45. PubMed ID: 31078951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.
    Chen Y; Nawaz AA; Zhao Y; Huang PH; McCoy JP; Levine SJ; Wang L; Huang TJ
    Lab Chip; 2014 Mar; 14(5):916-23. PubMed ID: 24406848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic valves in microfluidic channels for droplet manipulation.
    Qin X; Wei X; Li L; Wang H; Jiang Z; Sun D
    Lab Chip; 2021 Aug; 21(16):3165-3173. PubMed ID: 34190278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulation of Particle/Cell Based on Compressibility in a Divergent Microchannel by Surface Acoustic Wave.
    Xue S; Xu Q; Xu Z; Zhang X; Zhang H; Zhang X; He F; Chen Y; Xue Y; Hao P
    Anal Chem; 2023 Mar; 95(9):4282-4290. PubMed ID: 36815437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization.
    Gao Y; Fajrial AK; Yang T; Ding X
    Biomater Sci; 2021 Mar; 9(5):1574-1582. PubMed ID: 33283794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface acoustic wave manipulation of bioparticles.
    Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W
    Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis.
    Antfolk M; Muller PB; Augustsson P; Bruus H; Laurell T
    Lab Chip; 2014 Aug; 14(15):2791-9. PubMed ID: 24895052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces.
    Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D
    Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.