These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 32608464)

  • 41. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.
    Dron O; Aider JL
    Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrasound assisted particle and cell manipulation on-chip.
    Mulvana H; Cochran S; Hill M
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1600-10. PubMed ID: 23906935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator.
    Glynne-Jones P; Boltryk RJ; Harris NR; Cranny AW; Hill M
    Ultrasonics; 2010 Jan; 50(1):68-75. PubMed ID: 19709711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tunable and label-free bacteria alignment using standing surface acoustic waves.
    Toru S; Frenea-Robin M; Haddour N; Buret F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4998-5001. PubMed ID: 23367050
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.
    Behrens J; Langelier S; Rezk AR; Lindner G; Yeo LY; Friend JR
    Lab Chip; 2015 Jan; 15(1):43-6. PubMed ID: 25343424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves.
    Liu Y; Ji M; Yu N; Zhao C; Xue G; Fu W; Qiao X; Zhang Y; Chou X; Geng W
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735547
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unconventional acoustic approaches for localized and designed micromanipulation.
    Kolesnik K; Xu M; Lee PVS; Rajagopal V; Collins DJ
    Lab Chip; 2021 Aug; 21(15):2837-2856. PubMed ID: 34268539
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence.
    Skowronek V; Rambach RW; Schmid L; Haase K; Franke T
    Anal Chem; 2013 Oct; 85(20):9955-9. PubMed ID: 24053589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems.
    Hammarström B; Laurell T; Nilsson J
    Lab Chip; 2012 Nov; 12(21):4296-304. PubMed ID: 22955667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation.
    Glynne-Jones P; Boltryk RJ; Hill M
    Lab Chip; 2012 Apr; 12(8):1417-1426. PubMed ID: 22402608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices.
    Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.