These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 32608464)

  • 61. Elastomeric negative acoustic contrast particles for capture, acoustophoretic transport, and confinement of cells in microfluidic systems.
    Shields CW; Johnson LM; Gao L; López GP
    Langmuir; 2014 Apr; 30(14):3923-7. PubMed ID: 24673242
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bipolar Electrode-based Sheath-Less Focusing and Continuous Acoustic Sorting of Particles and Cells in an Integrated Microfluidic Device.
    Wu Y; Ma X; Li K; Yue Y; Zhang Z; Meng Y; Wang S
    Anal Chem; 2024 Feb; 96(8):3627-3635. PubMed ID: 38346846
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Virtual membrane for filtration of particles using surface acoustic waves (SAW).
    Fakhfouri A; Devendran C; Collins DJ; Ai Y; Neild A
    Lab Chip; 2016 Sep; 16(18):3515-23. PubMed ID: 27458086
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Acoustic focusing with engineered node locations for high-performance microfluidic particle separation.
    Fong EJ; Johnston AC; Notton T; Jung SY; Rose KA; Weinberger LS; Shusteff M
    Analyst; 2014 Mar; 139(5):1192-200. PubMed ID: 24448925
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Surface acoustic wave concentration of particle and bioparticle suspensions.
    Li H; Friend JR; Yeo LY
    Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.
    Fakhfouri A; Devendran C; Albrecht T; Collins DJ; Winkler A; Schmidt H; Neild A
    Lab Chip; 2018 Jul; 18(15):2214-2224. PubMed ID: 29942943
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
    Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ
    Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques.
    Garbin A; Leibacher I; Hahn P; Le Ferrand H; Studart A; Dual J
    J Acoust Soc Am; 2015 Nov; 138(5):2759-69. PubMed ID: 26627752
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Two-stage particle separation channel based on standing surface acoustic wave.
    Lv H; Chen X; Zhang Y; Wang X; Zeng X; Zhang D
    J Microsc; 2022 Apr; 286(1):42-54. PubMed ID: 35179787
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW).
    Shi J; Mao X; Ahmed D; Colletti A; Huang TJ
    Lab Chip; 2008 Feb; 8(2):221-3. PubMed ID: 18231658
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microfluidic resonant cavities enable acoustophoresis on a disposable superstrate.
    Witte C; Reboud J; Wilson R; Cooper JM; Neale SL
    Lab Chip; 2014 Nov; 14(21):4277-83. PubMed ID: 25224539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.