BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32609405)

  • 1. Designing Hole Transport Materials with High Hole Mobility and Outstanding Interface Properties for Perovskite Solar Cells.
    Jiang R; Zhu R; Li ZS
    Chemphyschem; 2020 Aug; 21(16):1866-1872. PubMed ID: 32609405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide Perovskite Solar Cells.
    Rodríguez-Seco C; Cabau L; Vidal-Ferran A; Palomares E
    Acc Chem Res; 2018 Apr; 51(4):869-880. PubMed ID: 29543439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the electrochemical properties of hole transport materials with spiro-cores for efficient perovskite solar cells from first-principles.
    Chi WJ; Li QS; Li ZS
    Nanoscale; 2016 Mar; 8(11):6146-54. PubMed ID: 26932177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positional Effect of the Triphenylamine Group on the Optical and Charge-Transfer Properties of Thiophene-Based Hole-Transporting Materials.
    Hao M; Chi W; Li Z
    Chem Asian J; 2020 Jan; 15(2):287-293. PubMed ID: 31823524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient hole transport materials based on naphthyridine core designed for application in perovskite solar photovoltaics.
    Vatanparast M; Shariatinia Z
    J Mol Graph Model; 2022 Dec; 117():108292. PubMed ID: 36001906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Efficient Amphiphilic-Type Triphenylamine-Based Organic Hole Transport Material for High-Performance and Ambient-Stable Dopant-Free Perovskite and Organic Solar Cells.
    Reddy SS; Park HY; Kwon H; Shin J; Kim CS; Song M; Jin SH
    Chemistry; 2018 Apr; 24(24):6426-6431. PubMed ID: 29436044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of π-bridge conjugation on the electrochemical properties within hole transporting materials for perovskite solar cells.
    Hu W; Zhang Z; Cui J; Shen W; Li M; He R
    Nanoscale; 2017 Sep; 9(35):12916-12924. PubMed ID: 28858360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron-nitrogen substituted planar cores: designing dopant-free hole-transporting materials for efficient perovskite solar cells.
    Hao M; Chi W; Li Z
    Nanoscale; 2021 Feb; 13(7):4241-4248. PubMed ID: 33595005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guidelines for Fabricating Highly Efficient Perovskite Solar Cells with Cu
    Sajid S; Alzahmi S; Salem IB; Obaidat IM
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic-inorganic hybrid material for hole transport in inverted perovskite solar cells.
    Tingare YS; Su C; Hsu YC; Lai NW; Wang WC; Lin XC; Lai PW; Yang HY; Lew XR; Li WR
    ChemSusChem; 2024 May; 17(10):e202301508. PubMed ID: 38280139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic-organic hybrid perovskite solar cells.
    Li W; Otsuka M; Kato T; Wang Y; Mori T; Michinobu T
    Beilstein J Org Chem; 2016; 12():1401-9. PubMed ID: 27559390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterocyclic Functionalized Donor-Acceptor Hole-Transporting Materials for Inverted Perovskite Solar Cells.
    Tingare YS; Wang WC; Lin HJ; Wu CW; Lin JH; Su C; Lin XC; Zhang JR; Huang YX; Tsai H; Nie W; Li WR
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31675-31683. PubMed ID: 37348057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells.
    Xu B; Sheibani E; Liu P; Zhang J; Tian H; Vlachopoulos N; Boschloo G; Kloo L; Hagfeldt A; Sun L
    Adv Mater; 2014 Oct; 26(38):6629-34. PubMed ID: 25124337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells.
    Chen J; Chen BX; Zhang FS; Yu HJ; Ma S; Kuang DB; Shao G; Su CY
    Chem Asian J; 2016 Apr; 11(7):1043-9. PubMed ID: 26840766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promotion Strategies of Hole Transport Materials by Electronic and Steric Controls for n-i-p Perovskite Solar Cells.
    Cheng F; Cao F; Ru Fan F; Wu B
    ChemSusChem; 2022 Jul; 15(14):e202200340. PubMed ID: 35377527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material.
    Zhang J; Xu B; Johansson MB; Vlachopoulos N; Boschloo G; Sun L; Johansson EM; Hagfeldt A
    ACS Nano; 2016 Jul; 10(7):6816-25. PubMed ID: 27304078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Perovskite Solar Cells Efficiency by Management of the Electron Withdrawing Groups in Hole Transport Materials: Theoretical Calculation and Experimental Verification.
    Qi J; Wang R; Zeng Y; Gao X; Chen X; Shen W; Wu F; Li M; He R; Liu X
    Small; 2024 May; ():e2312122. PubMed ID: 38709229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underlying Interface Defect Passivation and Charge Transfer Enhancement via Sulfonated Hole-Transporting Materials for Efficient Inverted Perovskite Solar Cells.
    Li M; Chang J; Sun R; Wang H; Tian Q; Chen S; Wang J; He Q; Zhao G; Xu W; Li Z; Zhang S; Wang F; Qin T
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53331-53339. PubMed ID: 36395380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells.
    Chen S; Liu P; Hua Y; Li Y; Kloo L; Wang X; Ong B; Wong WK; Zhu X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13231-13239. PubMed ID: 28345338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.