These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32609505)

  • 21. Knockout of alanine racemase gene attenuates the pathogenicity of Aeromonas hydrophila.
    Liu D; Zhang T; Wang Y; Muhammad M; Xue W; Ju J; Zhao B
    BMC Microbiol; 2019 Apr; 19(1):72. PubMed ID: 30940083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.
    McCoy AJ; Maurelli AT
    Mol Microbiol; 2005 Jul; 57(1):41-52. PubMed ID: 15948948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of D-alanine-D-alanine ligase from Thermus thermophilus HB8: cumulative conformational change and enzyme-ligand interactions.
    Kitamura Y; Ebihara A; Agari Y; Shinkai A; Hirotsu K; Kuramitsu S
    Acta Crystallogr D Biol Crystallogr; 2009 Oct; 65(Pt 10):1098-106. PubMed ID: 19770507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active-site mutants of the VanC2 D-alanyl-D-serine ligase, characteristic of one vancomycin-resistant bacterial phenotype, revert towards wild-type D-alanyl-D-alanine ligases.
    Healy VL; Park IS; Walsh CT
    Chem Biol; 1998 Apr; 5(4):197-207. PubMed ID: 9545431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the Apo form of D-Alanine:D-Alanine ligase (DDl) from Streptococcus mutans.
    Lu Y; Xu H; Zhao X
    Protein Pept Lett; 2010 Aug; 17(8):1053-7. PubMed ID: 20522004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding.
    Huynh KH; Hong MK; Lee C; Tran HT; Lee SH; Ahn YJ; Cha SS; Kang LW
    J Microbiol; 2015 Nov; 53(11):776-82. PubMed ID: 26502962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB.
    Marshall CG; Broadhead G; Leskiw BK; Wright GD
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6480-3. PubMed ID: 9177243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and enzymatic characterization of BacD, an L-amino acid dipeptide ligase from Bacillus subtilis.
    Shomura Y; Hinokuchi E; Ikeda H; Senoo A; Takahashi Y; Saito J; Komori H; Shibata N; Yonetani Y; Higuchi Y
    Protein Sci; 2012 May; 21(5):707-16. PubMed ID: 22407814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem.
    Garau G; Bebrone C; Anne C; Galleni M; Frère JM; Dideberg O
    J Mol Biol; 2005 Jan; 345(4):785-95. PubMed ID: 15588826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. KatG plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection.
    Zhang M; Yan Q; Mao L; Wang S; Huang L; Xu X; Qin Y
    Gene; 2018 Sep; 672():156-164. PubMed ID: 29906530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure and enantiomer selection by D-alanyl carrier protein ligase DltA from Bacillus cereus.
    Du L; He Y; Luo Y
    Biochemistry; 2008 Nov; 47(44):11473-80. PubMed ID: 18847223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutational analysis of the zinc- and substrate-binding sites in the CphA metallo-beta-lactamase from Aeromonas hydrophila.
    Bebrone C; Anne C; Kerff F; Garau G; De Vriendt K; Lantin R; Devreese B; Van Beeumen J; Dideberg O; Frère JM; Galleni M
    Biochem J; 2008 Aug; 414(1):151-9. PubMed ID: 18498253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression, purification and molecular characterization of elastase from Aeromonas hydrophila strain J-1.
    Meng X; Liu Y; Lu C
    Wei Sheng Wu Xue Bao; 2009 Dec; 49(12):1613-20. PubMed ID: 20222447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF.
    Paradis-Bleau C; Lloyd A; Sanschagrin F; Clarke T; Blewett A; Bugg TD; Levesque RC
    BMC Biochem; 2008 Dec; 9():33. PubMed ID: 19099588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations within the catalytic motif of DNA adenine methyltransferase (Dam) of Aeromonas hydrophila cause the virulence of the Dam-overproducing strain to revert to that of the wild-type phenotype.
    Erova TE; Fadl AA; Sha J; Khajanchi BK; Pillai LL; Kozlova EV; Chopra AK
    Infect Immun; 2006 Oct; 74(10):5763-72. PubMed ID: 16988254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. D-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition.
    de Chiara C; Homšak M; Prosser GA; Douglas HL; Garza-Garcia A; Kelly G; Purkiss AG; Tate EW; de Carvalho LPS
    Nat Chem Biol; 2020 Jun; 16(6):686-694. PubMed ID: 32203411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vancomycin resistance: structure of D-alanine:D-alanine ligase at 2.3 A resolution.
    Fan C; Moews PC; Walsh CT; Knox JR
    Science; 1994 Oct; 266(5184):439-43. PubMed ID: 7939684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene cloning, expression and homology modeling of hemolysin gene from Aeromonas hydrophila.
    Singh V; Somvanshi P; Rathore G; Kapoor D; Mishra BN
    Protein Expr Purif; 2009 May; 65(1):1-7. PubMed ID: 19136063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae.
    Islam Z; Kumar A; Singh S; Salmon L; Karthikeyan S
    J Biol Chem; 2015 May; 290(18):11293-308. PubMed ID: 25792735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins.
    Molero R; Wilhelms M; Infanzón B; Tomás JM; Merino S
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2772-2784. PubMed ID: 21737499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.