These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32609693)

  • 1. Lane detection in dense fog using a polarimetric dehazing method.
    Zhang L; Yin Z; Zhao K; Tian H
    Appl Opt; 2020 Jul; 59(19):5702-5707. PubMed ID: 32609693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization.
    Liang J; Ren L; Ju H; Zhang W; Qu E
    Opt Express; 2015 Oct; 23(20):26146-57. PubMed ID: 26480129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-pass filtering based polarimetric dehazing method for dense haze removal.
    Liang J; Ren L; Liang R
    Opt Express; 2021 Aug; 29(18):28178-28189. PubMed ID: 34614955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable Road Scene Interpretation Based on ITOM with the Integrated Fusion of Vehicle and Lane Tracker in Dense Traffic Situation.
    Jeong J; Yoon YH; Park JH
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarimetric dehazing utilizing spatial frequency segregation of images.
    Liu F; Cao L; Shao X; Han P; Bin X
    Appl Opt; 2015 Sep; 54(27):8116-22. PubMed ID: 26406513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lane-Level Map-Matching Method for Vehicle Localization Using GPS and Camera on a High-Definition Map.
    Kang JM; Yoon TS; Kim E; Park JB
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image dehazing using polarization effects of objects and airlight.
    Fang S; Xia X; Xing H; Chen C
    Opt Express; 2014 Aug; 22(16):19523-37. PubMed ID: 25321035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized Polarimetric Dehazing Method Based on Low-Pass Filtering in Frequency Domain.
    Liang J; Ju H; Ren L; Yang L; Liang R
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32244850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction algorithm of haze image based on blind separation model of polarized orthogonal airlight.
    Zhang X; Song M; Fan Z; Jin H
    Opt Express; 2022 Nov; 30(23):42097-42113. PubMed ID: 36366670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.
    Qu Y; Zou Z
    Opt Express; 2017 Oct; 25(21):25004-25022. PubMed ID: 29041173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization dehazing method based on separating and iterative optimizing airlight from the frequency domain for different concentrations of haze.
    Sun R; Liao T; Fan Z; Zhang X; Wang C
    Appl Opt; 2022 Dec; 61(35):10362-10373. PubMed ID: 36607094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the effect of fog weather conditions on driver lane-keeping performance using the SHRP2 naturalistic driving study data.
    Das A; Ghasemzadeh A; Ahmed MM
    J Safety Res; 2019 Feb; 68():71-80. PubMed ID: 30876522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mueller transform matrix neural network for underwater polarimetric dehazing imaging.
    Gao J; Wang G; Chen Y; Wang X; Li Y; Chew KH; Chen RP
    Opt Express; 2023 Aug; 31(17):27213-27222. PubMed ID: 37710801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion.
    Liang J; Zhang W; Ren L; Ju H; Qu E
    Appl Opt; 2016 Oct; 55(29):8221-8226. PubMed ID: 27828066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using ADAS to Future-Proof Roads-Comparison of Fog Line Detection from an In-Vehicle Camera and Mobile Retroreflectometer.
    Storsæter AD; Pitera K; McCormack E
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-of-Flight Imaging in Fog Using Polarization Phasor Imaging.
    Zhang Y; Wang X; Zhao Y; Fang Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speed choice and driving performance in simulated foggy conditions.
    Brooks JO; Crisler MC; Klein N; Goodenough R; Beeco RW; Guirl C; Tyler PJ; Hilpert A; Miller Y; Grygier J; Burroughs B; Martin A; Ray R; Palmer C; Beck C
    Accid Anal Prev; 2011 May; 43(3):698-705. PubMed ID: 21376857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active imaging through dense fog by utilizing the joint polarization defogging and denoising optimization based on range-gated detection.
    Huang F; Qiu S; Liu H; Liu Y; Wang P
    Opt Express; 2023 Jul; 31(16):25527-25544. PubMed ID: 37710437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using trajectory-level SHRP2 naturalistic driving data for investigating driver lane-keeping ability in fog: An association rules mining approach.
    Das A; Ahmed MM; Ghasemzadeh A
    Accid Anal Prev; 2019 Aug; 129():250-262. PubMed ID: 31176145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lane-GAN: A Robust Lane Detection Network for Driver Assistance System in High Speed and Complex Road Conditions.
    Liu Y; Wang J; Li Y; Li C; Zhang W
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.